The purpose of this study was to formulate the optimal ratio of tofu ice cream made with crushed tofu and soybean milk. Also, to compare characteristics of tofu ice cream and soybean ice cream. Mix viscosity, overrun and melting down are measured as characteristics of ice cream. The optimal mixing ratio of tofu ice cream was determined by response surface methodology based on overall quality. As a result of optimization, tofu ice cream was made with 65.90% tofu cream (9% solid contents), 4.35% whipping cream, 14.35% canola oil, 15.00% sugar, 0.2% emulsifier and 0.2% guar gum. Soybean ice cream made with three different treated (blanched, steamed, roasted) soybean and each preprocess are treated for 0-20 min. Mix viscosity was enhanced preprocessing time increasing. Also, overrun and melting down was decline preprocessing time increased. As a result of comparison of ice cream overall quality, 15 min roasted soybean ice cream was shown the best quality.
The purpose of this study was to formulate the optimal mixing ratio for Korean vinegared cabbages harvested in fall from Haenam, Hongseong and Gyeongsan regions. The general compositions such as moisture and ash, and hardness were not significant different among 3 cabbages. The vinegared cabbage was made with vinegar, salt and sugar, and stored at 5oC for 5 d. The diffusion of salt, sugar and vinegar to the cabbage was completed within 3 h. The optimal mixing ratio of those components was determined by response surface methodology (RSM) based on overall preference. As a result of analysis, optimal mixing ratio of Haenam vinegared cabbage was 8.94% vinegar, 1.88% salt, and 18.18% sugar, whereas 8.91% vinegar, 2.12% salt, and 17.97% sugar in Hongseong vinegared cabbage, lastly 8.24% vinegar, 2.50% salt, and 18.26% sugar in Gyeongsan vinegared cabbage. Storage characteristics were investigated at different storage times and temperatures using overall preference, texture, and pH. Overall preference and texture were enhanced after 1 wk storage, but vinegared cabbage was spoiled after 3 wk at 20oC. Change in pH was the fastest during 1 wk at all temperatures, and then reached equilibrium.
PURPOSES : This study was conducted to derive the optimum mixing ratio of phosphorescent pigment for the development of phosphorescent line marking.
METHODS: In this study, we utilized a literature review and case study methodology, to describe the domestic and foreign state of practice for the production and mixing of phosphorescent pigment for use in line marking. The optimal mixing ratio was derived by comparing the reduction in luminance over time for the various phosphorescent pigment mixing ratios identified in the literature. In addition, performance and construction characteristics were analyzed using field testing techniques.
RESULTS : The results were as follows: 1) the results of the luminance performance standards tests showed that all of the phosphorescence test specimens satisfied the phosphorescent fire protection standard. As the phosphorescent pigment mixing ratio increased, the luminance value increased, 2) the luminance reduction rate was minimum at the mixing ratio of 50%. However, when compared to a mixing ratio 40%, a small difference was recorded, the luminance reduction rate from the mixing ratio of 40% is judged as being converged. Therefore, in view of the economic efficiency, it was determined that the optimal mixing ratio was 40%, 3) as a result of construction on the field, a mixing ratio of 40% was found to have a higher luminance value than the general line marking for up to three hours after sunset, 4) it was found that the phosphorescent line markings without glass beads spraying had a higher luminance value than the phosphorescent line markings with glass beads spraying.
CONCLUSIONS : Through the results of the basic experiments of the line markings obtained by blending a phosphorescent pigment, the results could be applied to play an important role in the development of phosphorescent line marking paint technology and in establishing application planning for on-site construction characteristics.
연구는 알칼리 활성시멘트(Alkali Activated Cement)를 콘크리트에 활용하기 위한 기초적인 연구로서 잔골재 및 굵은골재의 혼합비는 일정하게 하고, 활성화제/플라이 애쉬의 혼합비, 그리고 활성화제 중 물유리, 수산화나트륨, 물의 혼합비를 변화시킨 AAC 콘크리트에 대한 압축강도를 측정하였다. 또한 각 변수에 따른 압축강도의 특성을 분석하고, AAC 콘크리트의 최적 혼합비를 구하였다. 그 결과 최대 압축강도 발현을 위한 활성화제 중 물유리, 수산화나트륨, 물의 최적 혼합비는 4.0:1.0:2.5 이었으며, 활성화제/플라이 애쉬의 최적 혼합비는 0.7 이었다
The asphalt mixture with CRM(Crumb Rubber Modifier) is known to show a better performance in resisting thermal cracking, fatigue cracking and rutting compared with the conventional mixture. The laboratory tests on the physical characteristics of indirect tensile strength, density, flow and Marshall value of the CRM asphalt were conducted. The test results show that CRM asphalt has better physical characteristics than that of conventional asphalts. And the analysis on the noise reduction effect, penetration capacity from the field test on the national road in Haksan of Chungbuk, and recycling of tire waste were conducted. From this study, the results show that 1% CRM asphalt has higher the noise reduction effect and penetration capacity than those of conventional asphalts. And, optimal contents of crumb rubber modifier in the asphalt binder is one percent. In this case, crumb rubber modifier were used 10 ㎏ to make the asphalt binder of one cubic meter. So it was named as Eco-asphalt.