검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Bioreactors are devices used by sewage treatment plants to process sewage and which produce active sludge, and sediments separated by solid-liquid are treated in anaerobic digestion tanks. In anaerobic digestion tanks, the volume of active sludge deposits is reduced and biogas is produced. After dehydrating the digestive sludge generated after anaerobic digestion, anaerobic digested wastewater, which features a high concentration of organic matters, is generated. In this study, the decomposition of organic carbon and nitrogen was studied by advanced oxidation process. Ozone-microbubble flotation process was used for oxidation pretreatment. During ozonation, the TOC decreased by 11.6%. After ozone treatment, the TOC decreased and the removal rate reached 80.4% as a result of the Ultra Violet-Advanced Oxidation Process (UV-AOP). The results with regard to organic substances before and after treatment differed depending on the organic carbon index, such as CODMn, CODCr, and TOC. Those indexes did not change significantly in ozone treatment, but decreased significantly after the UV-AOP process as the linkage treatment, and were removed by up to 39.1%, 15.2%, and 80.4%, respectively. It was confirmed that biodegradability was improved according to the ratio of CODMn to TOC. As for the nitrogen component, the ammonia nitrogen component showed a level of 3.2×102 mg/L or more, and the content was maintained at 80% even after treatment. Since most of the contaminants are removed from the treated water and its transparency is high, this water can be utilized as a resource that contains high concentrations of nitrogen.
        4,000원
        2.
        2005.03 KCI 등재 서비스 종료(열람 제한)
        The performance of ozone contactor in ozone-BAC advanced water treatment process was evaluated by the degree of decomposition of organic matters. The degree was measured by the analyses of UV254 absorbance and the concentrations of DOC and BDOC for the sand filtered water and the ozone treated water, respectively. In addition, the ozone concentration in the contactor, required for the maximum BDOC concentration, was selected as the optimum concentration, and the appropriate residential time of ozone treated water in a reservoir was recommended based on the residual ozone concentration in the treated water. The following results were obtained from the pilot scale experiments. By ozonation UV254 absorbance was decreased, and BDOC concentration was increased. The change of DOC concentration by ozonation was negligible, but the excess input of ozone resulted in the removal of the small amount of BDOC by complete oxidation. The optimum ozone concentration was 0.58 mg O3/mg DOC. In order to remove residual ozone, 20 minutes of the residential time were enough after ozonation.
        3.
        2002.12 KCI 등재 서비스 종료(열람 제한)
        This study was carried out to evaluate the pollutant removal efficiencies of the advanced drinking water treatment using ozonation process. For raw water, Nakdong River was used. By conducting batch test of ozonation, the following results were obtained. When ozone dosage of 5 mg/ℓ was used, ozone transfer and utilization efficiencies of the ozonation were 94 to 92%, respectively. Removal efficiencies of single VOC compound or mixed VOC compounds in the raw water were 80% to 90% by the ozonation with 2 mg/ℓ dosage and 10 minutes contact time. Removal efficiencies of ABS by the ozonation with 1 mg/ℓ, 3 mg/ℓ dosage and 20 minutes contact time were 83% to 96% , respectively. Almost 67% of chlorophyll-a at the concentration of 38.4㎍/ℓ was removed by ozonation at ozone dosage of 1 ㎎/ℓ for 20 min. Considering the efficiency of ozone utilization and water treatment, the most effective ozonation could be obtained with high ozone dosage and short contact time.