Dynamic responses of nuclear power plant structure subjected to earthquake loads should be carefully investigated for safety. Because nuclear power plant structure are usually constructed by material of reinforced concrete, the aging deterioration of R.C. have no small effect on structural behavior of nuclear power plant structure. Therefore, aging deterioration of R.C. nuclear power plant structure should be considered for exact prediction of seismic responses of the structure. In this study, a machine learning model for seismic response prediction of nuclear power plant structure was developed by considering aging deterioration. The OPR-1000 was selected as an example structure for numerical simulation. The OPR-1000 was originally designated as the Korean Standard Nuclear Power Plant (KSNP), and was re-designated as the OPR-1000 in 2005 for foreign sales. 500 artificial ground motions were generated based on site characteristics of Korea. Elastic modulus, damping ratio, poisson’s ratio and density were selected to consider material property variation due to aging deterioration. Six machine learning algorithms such as, Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Artificial Neural Networks (ANN), eXtreme Gradient Boosting (XGBoost), were used t o construct seispic response prediction model. 13 intensity measures and 4 material properties were used input parameters of the training database. Performance evaluation was performed using metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analysis results show that neural networks present good prediction performance considering aging deterioration.
고성능 콘크리트(HPC) 압축강도는 추가적인 시멘트질 재료의 사용으로 인해 예측하기 어렵고, 개선된 예측 모델의 개발이 필수적 이다. 따라서, 본 연구의 목적은 배깅과 스태킹을 결합한 앙상블 기법을 사용하여 HPC 압축강도 예측 모델을 개발하는 것이다. 이 논 문의 핵심적 기여는 기존 앙상블 기법인 배깅과 스태킹을 통합하여 새로운 앙상블 기법을 제시하고, 단일 기계학습 모델의 문제점을 해결하여 모델 예측 성능을 높이고자 한다. 단일 기계학습법으로 비선형 회귀분석, 서포트 벡터 머신, 인공신경망, 가우시안 프로세스 회귀를 사용하고, 앙상블 기법으로 배깅, 스태킹을 이용하였다. 결과적으로 본 연구에서 제안된 모델이 단일 기계학습 모델, 배깅 및 스태킹 모델보다 높은 정확도를 보였다. 이는 대표적인 4가지 성능 지표 비교를 통해 확인하였고, 제안된 방법의 유효성을 검증하였다.
PURPOSES : In this study, surface distress (SD), rutting depth (RD), and international roughness index (IRI) prediction models are developed based on the zones of Incheon and road classes using regression analysis. Regression analysis is conducted based on a correlation analysis between the pavement performance and influencing factors.
METHODS : First, Incheon was categorized by zone such as industrial, port, and residential areas, and the roads were categorized into major and sub-major roads. A weather station triangle network for Incheon was developed using the Delaunay triangulation based on the position of the weather station to match the road sections in Incheon and environmental factors. The influencing factors of the road sections were matched Based on the developed triangular network. Meanwhile, based on the matched influencing factors, a model of the current performance of the road pavement in Incheon was developed by performing multiple regression analysis. Sensitivity analysis was conducted using the developed model to determine the influencing factor that affected each performance factor the most significantly.
RESULTS : For the SD model, frost days, daily temperature range, rainy days, tropical nights, and minimum temperatures are used as independent variables. Meanwhile, the truck ratio, freeze–thaw days, precipitation days, annual temperature range, and average temperatures are used for the RD model. For the IRI model, the maximum temperature, freeze–thaw days, average temperature, annual precipitation, and wet days are used. Results from the sensitivity analysis show that frost days for the SD model, precipitation days and freeze–thaw days for the RD model, and wet days for the IRI model impose the most significant effects.
CONCLUSIONS : We developed a road pavement performance prediction model using multiple regression analysis based on zones in Incheon and road classes. The developed model allows the influencing factors and circumstances to be predicted, thus facilitating road management.
국내 주요 사회기반시설의 70% 이상이 철근콘크리트 구조물로 구성되어 있다. 최근 다양한 사회적ㆍ환경적 변화로 인한 내하력 저하 및 노후화 진행이 발생됨에 따라 섬유강화 복합소재(FRP)를 활용한 유지보수 수요 및 비용이 급격히 증가되 고 있다. 이에 따라 보다 경제적이고 효율적으로 FRP 보강재를 활용함에 있어서 성능을 예측할 수 있는 방법이 요구된다. 본 연구에서는 CFRPㆍBFRP 복합재료를 실험 대상으로 선정하고 성능을 결정하는 주요 인자인 섬유/수지 함침률을 54.3%, 43.9%, 39% 3가지로 분류하여 성능을 평가하고 이를 활용하여 FRP의 성능을 예측할 수 있는 모델식을 개발하고자 하였다. 매개변수에 따른 성능평가 결과, 두 섬유 모두 함침률이 낮아질수록 재료성능 또한 감소되는 것이 확인되었으며, 특히 BFRP의 경우 39%의 함침률에서 감소폭이 CFRP 대비 더 큰 것으로 나타났다. 실험 결과와 기존의 예측 모델식과의 성능 비교를 통해 약 15%의 오 차가 나타나는 것을 확인하였으며, 이에 따른 보정계수를 산정하여 예측 모델식을 재정립하였다.
Algal bloom is an ongoing issue in the management of freshwater systems for drinking water supply, and the chlorophyll-a concentration is commonly used to represent the status of algal bloom. Thus, the prediction of chlorophyll-a concentration is essential for the proper management of water quality. However, the chlorophyll-a concentration is affected by various water quality and environmental factors, so the prediction of its concentration is not an easy task. In recent years, many advanced machine learning algorithms have increasingly been used for the development of surrogate models to prediction the chlorophyll-a concentration in freshwater systems such as rivers or reservoirs. This study used a light gradient boosting machine(LightGBM), a gradient boosting decision tree algorithm, to develop an ensemble machine learning model to predict chlorophyll-a concentration. The field water quality data observed at Daecheong Lake, obtained from the real-time water information system in Korea, were used for the development of the model. The data include temperature, pH, electric conductivity, dissolved oxygen, total organic carbon, total nitrogen, total phosphorus, and chlorophyll-a. First, a LightGBM model was developed to predict the chlorophyll-a concentration by using the other seven items as independent input variables. Second, the time-lagged values of all the input variables were added as input variables to understand the effect of time lag of input variables on model performance. The time lag (i) ranges from 1 to 50 days. The model performance was evaluated using three indices, root mean squared error-observation standard deviation ration (RSR), Nash-Sutcliffe coefficient of efficiency (NSE) and mean absolute error (MAE). The model showed the best performance by adding a dataset with a one-day time lag (i=1) where RSR, NSE, and MAE were 0.359, 0.871 and 1.510, respectively. The improvement of model performance was observed when a dataset with a time lag up of about 15 days (i=15) was added.
최근 국내외에서는 수질안정성 향상 및 부지면적 저감을 위해 막여과 공정도입이 활발한 추세이며 특히, 정수처리 분야에서는 정밀여과(Microfiltration) 및 한외여과(Ultrafiltration) 공정이 많이 적용되고 있다. 막여과 공정의 경제성 향상을 위해서는 세정 시점의 예측 및 세정 주기 연장이 매우 중요한 요소이다. 따라서, 본 연구에서는 인공신경망(Artificial neural network)을 활용하여 UF 공정차압(Transmembrane pressure) 예측 모델을 개발하고자 한다. 입력변수로는 유입수 온도, pH, 탁도 등의 일평균값을 이용하였다.
본 연구는 실험계획법(예: 반응표면계획법) 및 하모니 검색 알고리즘을 통하여 다양한 아스팔트 콘크리트 포장 구조체에 있어 피로균열의 공용성 인자인 인장변형률을 예측하는 모델을 개발하는 방법에 대한 연구이다. 인장변형률을 산정하기 위하여 한국건설기술연구소에서 개발한 유한요소 축대칭해석 프로그램인 KICTPAVE를 이용하여 아스팔트 층과 린콘크리트 층의 접속면에서 발생되는 변형률을 구하여 데이터베이스(D/B)화 하였다. 아스팔트 포장에서 입력변수인 층별 탄성계수 및 두께를 다양한 조건에서 KICTPAVE 프로그램을 수행하여 훈련용 D/B(Training Set)인 변형률의 값들을 구축한 후 반응표면계획법에 근거하여 회귀방정식을 정의하였으며 방정식에 필요한 계수값을 결정하기 위하여 하모니 검색 알고리즘을 이용하였다. 최종적으로 결정된 회귀방정식의 계수값들의 정확성을 검증하기 위해서 훈련용 D/B가 아닌 다른 조건의 입력변수를 이용하여 검증용 D/B(Testing Set)를 구축하고 이를 이용하여 개발된 모델을 검증하였다.
포장유지관리체계는 신설포장의 공용 이후 포장 유지보수를 실시함에 있어 기술적으로 타당하고 경제적으로 효율적인 보수전락을 적용하는 것을 목표로 한다. 이를 위해서는 신뢰성 있는 포장공용성 예측모델을 필요로 한다. 본 연구에서는 마르코프 체인 이론에 기초한 확률적 포장공용성 예측 시스템을 제안하고, 아스팔트 포장으로의 적용상 문제점 등을 기술하였다. 본 연구 결과로서 아스팔트 포장의 공용성 예측을 위한 포장상태 전이행렬을 정의하였으며, 정량적인 포장공용 수명평가 결과를 제시하였다.
포장유지관리체계는 신설포장의 공용 이후 포장 유지보수를 실시함에 있어 기술적으로 타당하고 경제적으로 효율적인 보수전락을 적용하는 것을 목표로 한다. 이를 위해서는 신뢰성 있는 포장공용성 예측모델을 필요로 한다. 본 연구에서는 마르코프 체인 이론에 기초한 확률적 포장공용성 예측 시스템을 제안하고, 아스팔트 포장으로의 적용상 문제점 등을 기술하였다. 본 연구 결과로서 아스팔트 포장의 공용성 예측을 위한 포장상태 전이행렬을 정의하였으며, 정량적인 포장공용 수명평가 결과를 제시하였다.
본 연구에서는 국도 아스팔트 포장의 포장파손예측모델을 개발하기 위한 장기 공용성 관측 구간을 선정하였다. 관측 구간의 선정을 위하여 신설 포장 구간 및 덧씌우기 포장 구간에 대한 실험계획표를 작성하였고, 실험계획표의 각 셀에 해당되는 구간은 국도 데이터 베이스를 이용하여 예비 관측 구간을 선정하였고, 현장 조사를 통하여 최종 관측 구간을 선정하였다. 선정된 관측 구간의 단위 연장은 200m이며, 신설 포장 구간 47개소 및 덧씌우기 포장 구간 48개소가 선정되었다. 선정된 관측 구간에 대하여 시간의 변화 또는 교통량의 변화에 따른 포장 상태를 바탕으로 균열 및 러팅에 관한 1차 분석 작업을 진행하였다. 향후 포장 관련 다양한 정보가 데이터 베이스에 구축된 후 통계분석을 통하여 포장 파손 예측 모형이 개발되어야 할 것이다.
본 연구에서는 국도 아스팔트 포장의 포장파손예측모델을 개발하기 위한 장기 공용성 관측 구간을 선정하였다. 관측 구간의 선정을 위하여 신설 포장 구간 및 덧씌우기 포장 구간에 대한 실험계획표를 작성하였고, 실험계획표의 각 셀에 해당되는 구간은 국도 데이터 베이스를 이용하여 예비 관측 구간을 선정하였고, 현장 조사를 통하여 최종 관측 구간을 선정하였다. 선정된 관측 구간의 단위 연장은 200m이며, 신설 포장 구간 47개소 및 덧씌우기 포장 구간 48개소가 선정되었다. 선정된 관측 구간에 대하여 시간의 변화 또는 교통량의 변화에 따른 포장 상태를 바탕으로 균열 및 러팅에 관한 1차 분석 작업을 진행하였다. 향후 포장 관련 다양한 정보가 데이터 베이스에 구축된 후 통계분석을 통하여 포장 파손 예측 모형이 개발되어야 할 것이다.
Concrete has recently been modified to have various performance and properties. However, the conventional method for predicting the compressive strength of concrete has been suggested by considering only a few influential factors. so, In this study, nine influential factors (W/B ratio, Water, Cement, Aggregate(Coarse, Fine), Fly ash, Blast furnace slag, Curing temperature, and humidity) of papers opened for 10 years were collected at 4 conferences in order to know the various correlations among data and the tendency of data. The selected mixture and compressive strength data were used for learning the Deep Learning Algorithm to derive a prediction model. The purpose of this study is to suggest a method of constructing a prediction model that predicts the compression strength with high accuracy based on Deep Learning Algorithms.
This study was evaluated compressive strength of age 28 days of binary blended concrete according to there type of superplasticizer and there type of w/c. In addition, we are proposed modification prediction model equation that can reflect efficiency of water reducing and influence of binders using Lyse equation to predict the compression strength through the conventional W/C.
과거에는 생애주기에 기반 유지관리 계획에 대한 인식이 부족하였기 때문에 검측자료의 축적은 이루어졌으나 이러한 검측 자료를 이용한 구성품의 수명예측 및 보수보강 시나리오 선정 등 유지관리 의사결정 지원을 위해 사용되지는 못하였다. 이에 본 연구에서는 자료 분석을 위한 궤도 검측 데이터 필터링 및 정제기법을 개발하고, 검측데이터 분석 기법 적용을 통한 궤도의 성능 평가 지표 결정, 다변수 구간특성 및 환경인자를 고려한 레일 마모 및 궤도 틀림에 대한 민감도 분석, 파형과 파장을 고려한 검측데이터 분석 등을 수행하였으며, 이러한 연구 결과를 기반으로 하여 검측된 레일 마모데이터를 이용한 불확실성 기반 궤도성능 예측모델 개봘과 관련한 연구를 수행하였다.
과거에는 생애주기에 기반 유지관리 계획에 대한 인식이 부족하였기 때문에 검측자료의 축적은 이루어졌으나 이러한 검측 자료를 이용한 구성품의 수명예측 및 보수보강 시나리오 선정 등 유지관리 의사결정 지원을 위해 사용되지는 못하였다. 따라서 축적된 검측 데이터로부터 궤도 구성품의 건전도를 평가할 수 있는 방법을 정립하고 잔존수명을 예측하여 효율적 유지관리를 실현할 수 있는 기법 개발의 필요성이 대두되고 있다. 이에 본 연구에서는 검측된 레일 마모데이터를 이용한 불확실성 기반 궤도성능 예측모델 개봘과 관련한 연구를 수행하였다.
고성능 콘크리트의 자기수축은 초기균열을 유도할 수 있기 때문에 내구성 측면에서 매우 중요하다. 이에 따라, 본 연구에서는 실험을 통해 혼화재료를 혼입한 고성능 콘크리트의 자기수축 특성을 분석한 후 예측모델을 제안하였다. 이를 위해 다양한 실험변수를 가진 시편에 대해 광범위한 실험을 수행하였다. 주요 실험변수는 혼화재료의 종류 및 혼입률로 설정하였으며 물-시멘트비는 30%로 고정하였다. 실험결과 플라이애시를 치환한 경우에는 자기수축량이 다소 감소하였으며, 고로슬래그를 사용한 경우에는 자기수축이 증가하였다. 또한, 수축저감제 및 팽창재의 혼입량이 클수록 고성능 콘크리트의 자기수축은 감소하는 경향을 보였다. 한편, 본 논문에서는 회귀분석을 통해 혼화재료를 사용한 고성능 콘크리트의 자기수축 예측식을 제안하였으며, 제안된 자기수축 예측식은 실험결과와 비교적 일치하였다