PURPOSES : Safety Evaluation of Wind Loads of Renewable Energy and Photovoltaic Power Structures. METHODS : Structural safety evaluation was conducted on the wind load of 3kW Photovoltaic Power Structures using ABAQUS. Wind speed was reviewed for 36m/s and 60m/s. Effective Mass and Mass Contribution of Photovoltaic Power Structures was utilized up to 90%. 7 steps were set and applied to structural analysis. RESULTS : As a result of the structural analysis, it was confirmed that the long-term blowing load was affected rather than the size of the wind load. Weak areas were identified at the point of the horizontal beam rather than the modules of the Photovoltaic Power Structures. In particular, it was confirmed that stress exceeding the allowable stress was generated at the junction. In order to secure the safety of Photovoltaic Power Structures, it is judged that reinforcement of the branch is necessary. CONCLUSIONS : The safety of Photovoltaic Power Structures structures for wind load is influenced by persistence rather than the size of the wind load. Therefore, in order to prevent this, it is judged that reinforcement of the branch is necessary.
The ultimate goal of this development is a hybrid solar energy storage device. It supplies stable power to the load due to the emergency generator that compensates for the power shortage due to solar power generation. We have developed a stand-alone photovoltaic power generation and energy storage system with a dual inverter that extends the performance life of the PV system. It solves the problem of shortening the lifespan of battery due to repetition of charge / discharge of PV system and supplies stable power to load due to emergency generator that compensates for power shortage due to solar power generation, and furthermore, A stand-alone photovoltaic power generation system having a dual inverter for extending the life span and a control method thereof. We have also developed an optimized energy solution that enables us to save and use the remaining surplus power in the ESS to save energy through efficiency, optimization and substantial energy savings.
지형 효과가 포함된 태양복사 모델(GWNU)을 이용한 한반도의 태양광 자원지도를 개발하였다. 태양복사 모델의 입력 자료는 위성 관측 자료(MODIS, OMI, MTSAT-1R)와 수치 모델(RDAPS) 자료를 사용하였으며 특히 고해상도 지형 자료를 이용하여 지형 효과에 따른 한반도의 지표면 태양광 변화를 계산하였다. 계산 결과를 월 및 연 누적하여 분석하였을 때 여름철은 태양 고도각이 높아 지형 효과에 영향이 10% 이하로 적은 반면 겨울철은 20% 이상의 큰 차이가 나타났다. 또한 4 km 해상도의 지표면 태양광의 경우보다 1 km 해상도의 경우 지형 효과 포함에 따른 태양광 차이가 약 2배 정도 크게 나타났다. 즉 지표면에 도달하는 태양광을 정확히 모델링하기 위해서는 입력 자료뿐만 아니라 정확하고 고해상도의 지형 자료가 필연적이며 지형효과는 더욱 뚜렷이 나타나 실제와 유사할 것이다.
In this paper, we present the result of investigations pertaining to the development of links between unit modules of the floating type photovoltaic energy generation system made of Pultruded FRP. Since the FRP has an excellent corrosion-resistance and high specific strength and stiffness, the FRP material may be highly appreciated for the development of the floating type photovoltaic energy generation system. we discussed the development concepts of the link between unit module of floating type photovoltaic energy generation system made of PFRP, tire, and synthetic fiber, briefly. The floating type photovoltaic energy generation system linked between unit modules is installed successfully at sea site.
이 논문는 펄트루젼 FRP 부재를 이용하여 부유식 태양광발전 시스템을 개발하기 위한 연구의 결과이다. 이미 설치 된 부유식 태양광발전 시스템의 단위구조물에 추가적인 단위구조물의 연결을 위하여 연결부를 설계하여 유한요소 해석을 통한 검증을 실시하였으며, 실제 현장에 기존 단위구조물과 연결부를 포함한 단위구조물의 연결부를 성공적 으로 시공하였다. 또한 기존 설치 구조물의 현장계측을 통하여 변위와 변형률을 얻어 기존의 실험 결과와 비교하여 구조물이 충분히 안전함을 확인하고 이를 바탕으로의 부유식 태양광발전 시스템의 설계 변경을 실시하였다. 설계변 경된 구조물에 대한 유한요소해석을 실시하였고 이를 허용응력과 비교하여 안전성을 검증하였다. 이로써 더욱 효율 적인 구조물을 개발하였으며 구조물의 제작하였다. 설계 변경된 단위구조물의 제작을 위한 펄트루젼 FRP부재의 생 산하였으며, 부유식 태양광 에너지 발전시설 구조물을 조립하였다.
This study estimates the greenhouse gas (GHG) emissions reduction resulting from photovoltaic and wind power technologies using a bottom-up approach for an indirect emission source (scope 2) in South Korea. To estimate GHG reductions from photovoltaic and wind power activities under standard operating conditions, methodologies are derived from the 2006 IPCC guidelines for national GHG inventories and the guidelines for local government greenhouse inventories of Korea published in 2016. Indirect emission factors for electricity are obtained from the 2011 Korea Power Exchange. The total annual GHG reduction from photovoltaic power (23,000 tons CO2eq) and wind power (30,000 tons CO2eq) was estimated to be 53,000 tons CO2eq. The estimation of individual GHGs showed that the largest component is carbon dioxide, accounting for up to 99% of the total GHG. The results of estimation from photovoltaic and wind power were 63.60% and 80.22% of installed capacity, respectively. The annual average GHG reductions from photovoltaic and wind power per year per unit installed capacity (MW) were estimated as 549 tons CO2eq/yr·MW and 647 tons CO2eq/yr·MW, respectively. Finally, the results showed that the level of GHG reduction per year per installed capacity of photovoltaic and wind power is 62% and 42% compared to the CDM project, respectively.
In this paper, we suggest the new floating type photovoltaic energy generation system, which is improved the structural and economical efficiency, compared with the system developed in the previous research. The structural system in new floating type photovoltaic energy generation system reveals better in structural performance.