In order to overcome the limitations of linear vibration energy harvesters and those using mechanical plucking, magnetic plucking vibration energy harvesters (MVEs) have garnered significant interest. This paper presents parametric studies aimed at proposing design guidelines for MVEs and compares two magnetic force models that describe interactions between two permanent magnets. A mathematical model describing the energy harvester is employed, followed by the introduction of two magnetic force models: an analytic model and an inverse square model. Subsequently, numerical simulations are conducted to investigate dynamic characteristics of MVEs, analyzing results in terms of tip displacement, voltage output, and harvested energy. Parametric studies vary the distance between magnets, the speed of the external magnet, and the beam shape. Results indicate that reducing the distance between magnets enhances energy harvesting effectiveness. An optimal velocity for the external magnet is observed, and studies on beam shape suggest greater energy harvesting when the shape favors deflection.
Composite-based piezoelectric devices are extensively studied to develop sustainable power supply and selfpowered devices owing to their excellent mechanical durability and output performance. In this study, we design a leadfree piezoelectric nanocomposite utilizing (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 (BCTZ) nanomaterials for realizing highly flexible energy harvesters. To improve the output performance of the devices, we incorporate porous BCTZ nanowires (NWs) into the nanoparticle (NP)-based piezoelectric nanocomposite. BCTZ NPs and NWs are synthesized through the solidstate reaction and sol-gel-based electrospinning, respectively; subsequently, they are dispersed inside a polyimide matrix. The output performance of the energy harvesters is measured using an optimized measurement system during repetitive mechanical deformation by varying the composition of the NPs and NWs. A nanocomposite-based energy harvester with 4:1 weight ratio generates the maximum open-circuit voltage and short-circuit current of 0.83 V and 0.28 A, respectively. In this study, self-powered devices are constructed with enhanced output performance by using piezoelectric energy harvesting for application in flexible and wearable devices.
Piezoelectric technology, which converts mechanical energy into electrical energy, has recently attracted drawn considerable attention in the industry. Among the many kinds of piezoelectric materials, BaTiO3 nanotube arrays, which have outstanding uniformity and anisotropic orientation compared to nanowire-based arrays, can be fabricated using a simple synthesis process. In this study, we developed a flexible piezoelectric energy harvester (f-PEH) based on a composite film with PVDF-coated BaTiO3 nanotube arrays through sequential anodization and hydrothermal synthesis processes. The f-PEH fabricated using the piezoelectric composite film exhibited excellent piezoelectric performance and high flexibility compared to the previously reported BaTiO3 nanotube array-based energy harvester. These results demonstrate the possibility for widely application with high performance by our advanced f-PEH technique based on BaTiO3 nanotube arrays.
A flexible piezoelectric energy harvester(f-PEH) that converts tiny mechanical and vibrational energy resources into electric signals without any restraints is drawing attention as a self-powered source to operate flexible electronic systems. In particular, the nanocomposites-based f-PEHs fabricated by a simple and low-cost spin-coating method show a mechanically stable and high output performance compared to only piezoelectric polymers or perovskite thin films. Here, the non-piezoelectric polymer matrix of the nanocomposite-based f-PEH is replaced by a P(VDF-TrFE) piezoelectric polymer to improve the output performance generated from the f-PEH. The piezoelectric hybrid nanocomposite is produced by distributing the perovskite PZT nanoparticles inside the piezoelectric elastomer; subsequently, the piezoelectric hybrid material is spin-coated onto a thin metal substrate to achieve a nanocomposite-based f-PEH. A fabricated energy device after a two-step poling process shows a maximum output voltage of 9.4 V and a current of 160 nA under repeated mechanical bending. Finite element analysis(FEA) simulation results support the experimental results.
As most infrastructure have low natural frequency for vibration, an energy harvester to operate wireless sensors for them should be aimed to low frequency and have high output efficiency. This study proposes the energy harvester with parallel-connected single crystal ceramic for low frequency in order to gain enhanced efficiency. The performance is confirmed by the experiment using the acceleration data of hangers in Yeongjong Bridge.
Despite the fact that wireless sensor is needed to be activated in order to do efficient and continuous management, batteries are limited on their lives in case of wireless sensor. This paper suggests that the energy harvester model can be used within low frequency and examined using single crystal PMN-PT material which is definitely good at the efficiency of piezoelectric in order to maximize the output power. And the possibility of wireless sensor node power supply is verified by using an acceleration data of cable hangers of YoungJong Grand Bridge.