The effects of different spray angles (90°, 85°, 80°) on the microstructure and mechanical properties of a Y2O3 coating layer prepared using the atmospheric plasma spray (APS) process were studied. The powders employed in this study had a spherical shape and included a cubic Y2O3 phase. The APS coating layer exhibited the same phase as the powders. Thickness values of the coating layers were 90°: 203.7 ± 8.5 μm, 85°: 196.4 ± 9.6 μm, and 80°: 208.8 ± 10.2 μm, and it was confirmed that the effect of the spray angle on the thickness was insignificant. The porosities were measured as 90°: 3.9 ± 0.85%, 85°: 11.4 ± 2.3%, and 80°: 12.7 ± 0.5%, and the surface roughness values were 90°: 5.9 ± 0.3 μm, 85°: 8.5 ± 1.1 μm, and 80°: 8.5 ± 0.4 μm. As the spray angle decreased, the porosity increased, but the surface roughness did not show a significant difference. Vickers hardness measurements revealed values of 90°: 369.2 ± 22.3, 85°: 315.8 ± 31.4, and 80°: 267.1 ± 45.1 HV. It was found that under the condition of a 90° angle with the lowest porosity exhibited the best hardness value. Based on the aforementioned results, an improved method for the APS Y2O3 coating layer was also discussed.
We synthesized YOF(yttirum oxyfluoride) powders through solid state reactions using Y2O3 and YF3 as raw materials. The synthesis of crystalline YOF was started at 300 oC and completed at 500 oC. The atmosphere during synthesis had a negligible effect on the synthesis of the YOF powder under the investigated temperature range. The particle size distribution of the YOF was nearly identical to that of the mixed Y2O3 and YF3 powders. When the synthesized YOF powders were used as a raw material for the suspension plasma spray(SPS) coating, the crystalline phases of the coated layer consisted of YOF and Y2O3, indicating that oxidation or evaporation of YOF powders occurred during the coating process. Based on thermogravimetric analysis, the crystalline formation appeared to be affected by the evaporation of fluoride because of the high vapor pressure of the YOF material.
Thermal barrier coatings(TBCs) are being applied in many industrial fields such as thermal power generation, aviation and seasonal fields. ZrO2-Y2O3(8%) thermal spray coating powders are commercially used as thermal-barrier coating materials to protect against oxidation and corrosion of heat-resistant alloys at elevated temperatures. Currently, ZrO2-Y2O3(8%) thermal-spray powder is made using the industrial co-precipitation process, which is very complex and requires a lot of time. In this study, orthorhombic ZrO2 and Y2O3 powders were fabricated by mechanical mixing, which is more economical than the co-precipitation process. A tetragonal, yttria-stabilized zirconia(YSZ) coating-layer was produced by plasma spraying, using orthorhombic ZrO2-Y2O3(8%) powder. Our experimental results indicate that ZrO2-Y2O3(8%) mixed powder can be used economically in industry because it is no longer necessary to make this powder by liquid and gas-phase methods.
Yttria-stabilized zirconia (YSZ) coatings are fabricated via suspension plasma spray (SPS) for thermal barrier applications. Three different suspension sets are prepared by using a planetary mill as well as ball mill in order to examine the effect of starting suspension on the phase evolution and the microstructure of SPS prepared coatings. In the case of planetary-milled commercial YSZ powder, a deposited thick coating turns out to have a dense, vertically-cracked microstructure. In addition, a dense YSZ coating with fully developed phase can be obtained via suspension plasma spray with suspension from planetary-milled mixture of Y2O3 and ZrO2.
분무건조법으로 용사용 원적외선 세라믹/알루미늄 복합분말을 제조하여 플라즈마 용사법으로 알루미늄 모재에 용사한 후, 미세구조, 결정상, 열충격저항성 그리고 분광복사율을 조사하였다. 분무건조된 복합분말의 입형은 구형으로 34~105μm . 영역에서 높은 복사율을 보였다. 그러나 알루미늄 첨가량이 증가할수록 원적외선 방사특성은 감소하였다. 결과적으로 용사법으로 원적외선 방사특성의 큰 손실 없이 방사체를 제조하기 위해서는 20~30%wt%Al를 첨가하여 복합분말을 제조하는 것이 가장 효율적이라고 판단된다.
Plasma sprayed ceramic coatings are widely used in various industrial fields to improve their properties or to reduce the production cost. The ceramic powders for plasma spray coating have been mainly manufactured by spray drying or fused+crushed process. In this study, chromium oxide which has better mechanical properties than those of the other ceramic was selected and agglomerated chromium oxide powders for plasma spray coating were produced by spray drying process with a various processing condition. The large hollow powders and the harsh surfaced powders are formed at high slurry feed rate more than 163 g/min. and low binder concentration less than 2wt%, respectively. These powders cause the considerable decrease of flowability and apparent density. The powders produced by spray drying process have the spherical shape with the mean size of 45 , but these are shown lower apparent density and flowability than the powders produced by fused+crushed powders. The plasma spray coated layers by spray dried powders are shown a different microstructure with that by fused+crushed powders in porosity shape, but their properties such as density, hardness and bond strength are similar.