검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Large amounts of oily wastewater discharged from various industrial operations (petroleum refining, machinery industries and chemical industries) cause serious pollution in the aquatic environment. Although dissolved air flotation (DAF) separating oil pollutants using microbubbles represents current practice, bubble size cannot be selectively controlled, and lots of power is required to generate microbubbles. Therefore, to investigate performance of the DAF process, this study examined the distribution of different sizes of microbubbles resulting from changes in physical shear force via modifying shapes of a slit-nozzle without an additional power supply. Three types of slit-nozzles (different angle, shape and length of the slit-nozzle) were used to analyze the distribution of bubble size. At a slit angle of 60°, shear force was 4.29 times higher than a conventional slit, and particle size distribution (PSD) in the range between 2 and 20 μm more than doubled. Treatment efficiency of synthetic oily wastewater through the coagulation-DAF process achieved 90% removal of COD by injecting FeCl3 and PACl of 250 mg/L and 100 mg/L, respectively, and the same performance resulted using FeCl3 of 200 mg/L and PACl of 80 mg/L employing a slit-nozzle angle of 60°. This study shows that a coagulation-DAF process using a modified slit-nozzle can improve the pre-treatment of oily wastewater.
        4,000원
        2.
        2018.05 구독 인증기관·개인회원 무료
        2012년부터 강화된 총인의 농도를 준수하기 위해서는 응집에 의한 물리화학적 처리가 필수적인 후단공정이 되었으며, 현재 국내 하수처리시설 중 약 60%의 처리시설에서 총인처리시설이 설치되었다. 하지만 총인처리시설 운전에 따른 응집제 사용량이 증가하게 되었고, 이에 따라 약품 비용 및 슬러지 처리비 증가 등의 운영비가 상승하였다. 특히 분리막 공법(MBR)의 경우 막 투과수의 응집액 부족으로 인한 응집효율 저하 및 응집제의 과다 주입으로 인한 처리수질 악화 등의 문제가 발생하는 경우도 있다. 본 연구에서는 MBR 공법내에서 별도의 총인처리시설 필요 없이 생물학적 인제거를 극대화 하는 동시에 응집제 사용량을 최소화하면서 처리수의 인농도를 0.2 mg/L 이하로 유지할 수 있는 방안을 도출하고자 하였다.
        3.
        2017.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A membrane bioreactor by sequentially alternating the inflow and by applying a two-stage coagulation control based on pre-coagulation was evaluated in terms of phosphorus removal efficiency and cost-savings. The MBR consisted of two identical alternative reaction tanks, followed by aerobic, anoxic and membrane tanks, where the wastewater and the internal return sludge alternatively flowed into each alternative reaction tank at every 2 hours. In the batch-operated alternative reaction tank, the initial concentration of nitrate rapidly decreased from 2.3 to 0.4 mg/L for only 20 minutes after stopping the inflow, followed by substantial release of phosphorus up to 4 mg/L under anaerobic condition. Jar test showed that the minimum alum doses to reduce the initial PO4-P below 0.2 mg/L were 2 and 9 mol-Al/mol-P in the wastewater and the activated sludge from the membrane tank, respectively. It implies that a pre-coagulation in influent is more cost-efficient for phosphorus removal than the coagulation in the bioreactor. On the result of NUR test, there were little difference in terms of denitrification rate and contents of readily biodegradable COD between raw wastewater and pre-coagulated wastewater. When adding alum into the aerobic tank, alum doses above 26 mg/L as Al2O3 caused inhibitory effects on ammonia oxidation. Using the two-stage coagulation control based on pre-coagulation, the P concentration in the MBR effluent was kept below 0.2 mg/L with the alum of 2.7 mg/L as Al2O3, which was much lower than 5.1∼7.4 mg/L as Al2O3 required for typical wastewater treatment plants. During the long-term operation of MBR, there was no change of the TMP increase rate before and after alum addition.
        4,300원
        4.
        2017.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the coagulation/sedimentation (C/S) process of the water treatment process, the inflow of massive algal bloom causes many problems including fouling of filter media. This study was conducted to find out the way to remove the algae’s harmful effects by addition of pre-treatment prior to C/S process. Many Jar-tests were conducted such as ① ACF (Algae Coagulation·Flotation) process using natural algae coagulant (Water Health®), ② ACF + C/S process and ③ C/S process with a variety of conditions using cultured algae. The average values of turbidity were ① 0.42 NTU for ACF process, ② 0.13 NTU for ACF + C/S process and ③ 0.25 NTU for C/S process. It was shown that the treatment efficiency of ACF process could get low turbidity results, and ACF + C/S process could achieve more efficient results than those of C/S process. Any negative effects of ACF process to the efficiency of C/S process were not observed in ACF + C/S process. In order to reduce the unfavorable effects of algae, it was found out that the introduction of ACF process in the forms of ① ACF or ② ACF + C/S could be one of the effective and alternative solutions.
        4,300원
        5.
        2016.02 KCI 등재 서비스 종료(열람 제한)
        In this study, we have investigated to find optimal pre-treatment flocculation condition by analyzing the floc growth rate with mixing conditions and the membrane permeation flux for pre-treatment step of the membrane process. The higher mixing intensity showed a constant floc size index (FSI) values, and lower mixing intensity increased the degree of dispersion of the FSI values. Results of comparing the distribution characteristics of the FSI value and the permeation flux were more effective in increasing flux when the FSI values were 0.2 or higher. The degree of dispersion of FSI was relatively large in 40 rpm mixing condition compared to 120 rpm. In 40 rpm mixing condition, it decreased the permeation flux compared to 120 rpm because various sizes of flocs were distributed. Coagulation-UF membrane process enhanced 30%∼40% of the flux rate compare to UF alone process, and the coagulation-MF process increased up to 5% of the flux rate compare to MF alone process. Pre-treatment, that is, coagulation process, has been found to be less effects on relatively larger pore size for MF membrane. For UF membrane, the flux was a little bit same when applying only the rapid mixing process or rapid mixing with slow mixing processes together. In case of MF membrane, the flux was improved when rapid mixing process applied with slow mixing process together.