검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Gate valves are hydraulic components used to shut-off the water flow in water distribution systems. Gate valves may fail owing to various aspects such as leakage through seats, wearing of packing, and corrosion. Because it is considerably challenging to detect valve malfunctioning until the operator identifies a significant fault, failure of the gate valve may lead to a severe accident event associated with water distribution systems. In this study, we proposed a methodology to diagnose the faults of gate valves. To measure the pressure difference across a gate valve, two pressure transducers were installed before and after the gate valve in a pilot-scaled water distribution system. The obtained time-series pressure difference data were analyzed using a machine learning algorithm to diagnose faults. The validation of whether the flow rate of the pipeline can be predicted based on the pressure difference between the upstream and downstream sides of the valve was also performed.
        4,000원
        2.
        2022.05 구독 인증기관·개인회원 무료
        In domestic nuclear power plants, drums of concentrated radioactive waste solidified with paraffin that do not meet radioactive waste disposal standards are stored temporarily. In this paper, the design of a machine that separates these paraffin drums into paraffin and concentrated waste using heating vaporization and pressure difference is described. The separation process is as follows. First, the paraffin solid is indirectly heated by heating the outside of the drum. The paraffin solid is partially melted to increase the fluidity and is easily detached from the drum. The detached solid is transferred to the melting tank, and further heated in the melting tank. When the temperature is sufficiently high, paraffin is melted and becomes a mixture of liquid paraffin and concentrated waste homogeneously. The mixed solution is transferred to a paraffin recovery vessel and further heated. The vaporization point of paraffin is 370°C under atmospheric pressure, and becomes lower depending on the pressure decreasing in the vessel. The vaporization point of the paraffin is a relatively low value compared to the radioactive elements in the concentrated waste, and therefore only paraffin would be vaporized. A paraffin transfer pipe is installed on the upper part of the paraffin recovery vessel, and is connected to another tank called the paraffin capture vessel. The pressure of the paraffin capture vessel is reduced (i.e. vacuum condition), only gaseous paraffin is transferred to the paraffin capture vessel by the pressure difference. When the paraffin capture vessel is cooled below the vaporization point of the paraffin, the paraffin is liquefied or solidified, and only the paraffin is recovered. Based on the above process, the solidified paraffin could be separated into pure paraffin and concentrated waste. However, if a radioactive element with a lower vaporization point than paraffin exists in the concentrated waste, it may be mixed with paraffin and separated together. Therefore, it is necessary to measure the radioactivity or radiation dose rate for the separated paraffin, and to verify that it is sufficiently low. If necessary, additional separation process may be considered for removing radioisotopes from the paraffin.
        3.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Graphene oxide (GO) laminate is a new promising material for water purification system, which has extraordinary permeability only for water molecule. It consists of numerous nano-channels, in which water molecules could be nano-confined, resulting in slip of the molecules for very fast transportation speed. In this study, water penetration rate via different thickness of GO membrane according to driven pressures are measured experimentally, so that speed of water molecules and permeability are evaluated. Generally, water penetration rate via a membrane with macroscopic-sized channel increases linearly with pressure difference between up and bottom side of the membrane, but that via GO membrane approaches asymptotic value (i.e. saturation) as like a log function. Moreover, the permeability of GO membrane was observed in inverse proportion to its thickness. Based on the experimental observations, a correlation for volume flux via GO membrane was suggested with respect to its thickness and external pressure difference.
        4,000원
        4.
        2017.08 KCI 등재 서비스 종료(열람 제한)
        조영제의 혈관외유출을 한번이라도 경험한 방사선사들은 혈관외유출의 발생에 대한 두려움으로 검사하 는 동안 정신적 고통을 수반하게 된다. 환자의 경우 심한 신체적, 정신적 고통과 의료진 및 의료에 대한 불 신을 갖게 되므로 미연에 예방할 수 있는 방안의 마련이 무엇보다 필요하다. 따라서 본 연구에서는 조영제 주입 시 압력인 PSI를 낮추어 혈관외유출을 예방하고자 하며 그 방안으로 자동주입기와 환자의 정맥주사 바늘에 연결되는 Y자 형태의 연결관(connecting tube)의 직경에 따른 조영제 주입 시 PSI의 변화를 비교 분 석하고자 하였다. Y형태의 연결관 직경이 약 2 mm 정도인 A제품의 경우 전체 평균 연령의 PSI는 98.5, 표 준편차 9.72로 나타났다. 연결관 직경 약 3 mm 정도인 B제품의 경우 전체 연령의 평균 PSI는 62.0, 표준편 차 8.59로 나타났다. 이것은 직경이 더 넓은 B제품의 경우 A제품과 비교했을 때 평균압력이 37.05% 감소한 결과이다.