UHPC(Ultra High Performance Concrete) is used widely with its remarkable performance, such as strength, ductility and durability. Since the fibers in the UHPC can control the tensile crack, the punching shear capacity of UHPC is higher than that of the conventional concrete. In this paper, seven slabs with different thickness and fiber volume ratio were tested. The ultimate punching shear strength was increased with the fiber volume ratio up to 1%. The shear capacity of specimens with the fiber content 1% and 1.5% do not have big differences. The thicker slab has higher punching shear strength and lower deformation capacity. The critical sections of punching shear failure were similar regardless of the fiber volume ratio, but it were larger in thicker slab.
A improved strength model was developed to predict the punching shear strength of interior slab-column connections without shear reinforcement. Considering the damage due to flexural cracking at slab-column connections damaged by flexural cracking, the punchingshear force was assumed to be resisted mainly by the compression zone of the critical section. The punching shear strength was defined by using the material failure criteria of concrete. In the evaluation of the punching shear strength, the interaction between the shear stress and the compressive normal stress developed by the flexural moment of the slab was considered. The proposed strength model was verified by existing test specimens.
The objective of this study is to evaluate the location of a failure surface generatrix and the punching shear strength of hollow plat slabs. The main test parameters was the location of a starting position of hollow materials that varied between 1d and 3d, where d is effective depth of slab section. Based on test results, the starting position of hollow materials in plat slabs is recommended to be more than 2d to avoid the reduction of concrete punching shear strength.
강섬유보강 초고성능 콘크리트(UHPC)는 압축강도가 200MPa에 이르고, 강성 및 인성이 크기 때문에 이를 이용하면 구조 부재를 얇고 가볍게 설계하는 것이 가능하다. 본 논문은 UHPC를 교량의 바닥판 슬래브에 적용하기 위해서 뚫림전단(punching shear)에 대한 저항능력을 평가한 것이다. 6개의 정사각형 슬래브를 제작하여 4변 완전고정 상태에서 뚫림전단 실험을 수행하였다. 슬래브의 두께는 40mm와 70mm였고, 재하판의 형상비는 1.0~2.5 범위였다. 40mm 실험체는 최대하중 이후에 연성적인 변형률 연화구간이 길고, 70mm 실험체는 상대적으로 더 취성적인 뚫림파괴를 보였다. 기존의 여러 뚫림전단강도 평가식을 이용하여 실험결과를 분석하였는데, 두께가 작은 40mm 실험체에서는 DuctalⓇ 및 JSCE의 식이, 그리고 70mm 실험체에서는 Harajli et al. 및 ACI-DuctalⓇ의 제안식이 상대적으로 실험에 근접한 값을 예측하였다. 그러나 전반적으로 실험결과를 잘 예측하지 못하였으므로 실제 파괴메커니즘에 근거한 새로운 식을 제안하였다. 새로 제안한 식은 실험결과를 비교적 잘 예측하는 것으로 나타났다.
풍하중 및 지진하중등 횡하중이 작용하는 무량판 슬래브는 전단파괴와 같은 취성파괴를 지연시키기 위해서 충분한 전단강도와 연성능력을 보유하여야 한다. 본 연구에서는 반복 횡하중을 받는 무량판 슬래브의 전단강도와 변형성능을 고찰하기 위하여, 무보강 및 전단 보강된 총 4개의 내부기둥-슬래브 접합부를 실험하였다. 실험결과, 전단보강 슬래브의 이방향 전단강도는 무보강 슬래브보다 최대 1.5배까지 증가시켜 적용하는 콘크리트구조설계기준(KCI)과 ACI 318-02 기준은 중력하중만이 작용하는 경우에는 적절하나 조합하중 특히 횡하중의 영향이 클 경우에는 매우 불안전측 이었다. 한편, 변형성능 측면에서 슬래브-기둥 접합부의 1.5% 횡변위 성능을 확보하기 위하여 이방향 전단강도에 대한 중력하중비를 40%이하로 제한한 ACI-ASCE 352 위원회의 권고는 안전측인 것으로 나타났다.
연구는 플랫 플레이트 구조에서 직사각형 외부기둥-슬래브 접합부의 뚫림전단강도에 관한 실험결과에 관하여 다룬다. 직사각형 기둥의 형상비 증가에 따른 뚫림전단거동을 평가하기 위해 위험단면의 길이를 일정한 값이 되도록 기둥 단면크기를 산정하고 총 8개의 실험체를 계획하였다. 두 수준의 콘크리트 압축강도(f'c=24, 40MPa)에 대하여 기둥단면의 형상비(βc=C1