In 2017, the permanent shutdown of Kori Unit 1 was decided, marking the initiation of preparations for the decontamination and decommissioning of Kori Unit 1. The dismantling of radiologically contaminated equipment and concrete structures such as the Reactor Vessel (RV), Reactor Vessel Internals (RVI), and the Bio shield is crucial in the nuclear decommissioning process. These components became radiologically contaminated due to nuclear fission reactions occurring in the reactor during its operational period. The RVI dismantling at Spain’s Jose Cabrera Nuclear Power Plant involved the use of mechanical saws and disk cutters to divide it into approximately 430 pieces, taking 16 months to complete. Germany’s Stade Nuclear Power Plant employed mechanical circular saws to segment their RVI into about 170 pieces, which took 30 months to accomplish. Meanwhile, the RVI at Germany’s Wurgassen Nuclear Power Plant was subdivided into approximately 1,200 pieces using a combination of mechanical saws and abrasive water jets, requiring 61 months for completion. Due to the radioactivity in Kori Unit 1’s Reactor Vessel (RV) and Reactor Vessel Internals (RVI), remote-controlled systems were developed for cutting within the cavity to reduce radiation exposure. Specialized equipment was developed for underwater cutting operations. This paper focuses on modeling related to RVI operations using the MAVRIC code. The upper and lower parts of the RVI are classified as low-level radioactive waste, while the sides of the RVI that come into contact with fuel are classified as intermediate-level radioactive waste. Therefore, the modeling presented in this paper only considers the RVI sides since the upper and lower parts have a minimal impact on radiation exposure. Accurate calculations were performed through geometric modeling and radiation dose modeling. These research findings are anticipated to contribute to enhancing the efficiency and safety of nuclear reactor decommissioning operations
In order to evaluate the integrity of the reactor pressure vessel, various test specimens necessary to identify irradiation embrittlement. The degree of irradiation embrittlement of the vessel material by neutrons, from the construction to the end of the life of the plant, is evaluated by a monitoring plan that called surveillance program (a series of all plans to analyze and evaluate embrittlement through various tests and analyzes by placing a test piece inside the reactor pressure vessel and taking out a piece at an appropriate time according to the number of operation years and taking necessary measures for safe operation). The reactor monitoring specimens for Kori Unit-1 are located by axis at S (57°), T (67°), R (77°), N (237°), P (247°) and V (257°). Six surveillance capsules are attached to the inside of the pressure vessel around the core and to the outside of the thermal shield. This surveillance container determines the withdrawal timing of the surveillance container according to the provisions of ASTM E185-82. In the monitoring test piece, there are neutron dosimeter materials to measure and evaluate the irradiated neutron flux, and Ni, Cu, Fe, Co-Al, Cd, and shielded Co-Al monitors are wired in the monitoring container. Each axial position is contained in a spacer hole. The neutron dosimetry monitor measures the neutron dose using isotopes produced by neutrons during operation of the reactor. The Al-Co specimen, which can evaluate the degree of radioactivity of cobalt, is located on the lower part of the specimen. The content of Co in the Al-Co specimen is 0.15%, and when expressed in ppm, it is 1,500 ppm, which is similar to the cobalt content of 1,414 ppm in the internal structure of the reactor vessel presented in NUREG-3474. If the radiation value of the Al-Co sample in the reactor monitoring specimen can be measured, the radiation value of the internal structure of the reactor can be indirectly compared. Since the monitoring specimen is located outside of the thermal shield, radiation should be less than that of the thermal shield. Korea Reactor Monitoring Technology performed gamma measurement on Al-Co specimens in 6 monitoring specimens, and although there are differences depending on the sample, it shows radioactivity values around the order of 1E+07 dps/g, or Bq/g. In conclusion, it is thought that using this measurement values, it is possible to verify the evaluation of internal structure radiation for Kori unit-1 decommissioning.
The decommissioning process of Kori Nuclear Power Plant No.1, which was permanently suspended in 2017, various studies and attention on the decommissioning of nuclear power plants and waste management are being focused. In particular, decommissioning of high-risk facilities should take into account both safety and economic aspects. Small defects in the decommissioning process may lead to major disasters, and the resulting economic losses will cause enormous damage at the national level. In order to prevent such damage, various decommissioning process simulations within a virtual environment should be performed, and process errors and results should be collected and analyzed through simulation to derive the optimal decommissioning scenario as possible. The platform introduced in this paper builds a virtual environment based on drawing and modeling data of Kori Nuclear Power Plant No.1 and automatically creates an optimized cutting path for dismantling the facility and internal structure, and simulates a cutting process similar to reality using Robot Arm. In addition, it is possible to derive and analyze a cutting process scenario by processing process results such as time required for work and cutting distance collected through simulation.
In this study we present basic principles and features of RVI2CELL, a precise RV (radial velocity) estimation program to process stellar spectra obtained through iodine cell. RVI2CELL is very robust and fast program. The instrument profile can be modeled as a sum of Gaussian functions or a non-parametric arbitrary shape. The RV accuracy estimated by observation of a RV standard star Tau Ceti indicates about 9 m/s.