검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        2.
        2017.05 서비스 종료(열람 제한)
        Background : Acreage of rain-shelter plastic greenhouse to prevent anthrax is being gradually increased according to growing importance of safe Boxthorn production. But When Boxthorn is grown in the hot season in rain-shelter plastic greenhouse, Fertility decreases. The fertilization rate tends to be different according to cultivated variety and ventilation type of rain-shelter plastic greenhouse. Therefore it is necessary to identify cause and look for a solution. Methods and Results : In the experiment, ‘Cheongun’ cultivar was grown in the rain-shelter plastic greenhouses for the tests. Environment of rain-shelter plastic greenhouses, fertilization rate and density of flower visiting insect were investigated according to ventilation type. Pollen germination and pollen tube elongation on stigma were investigated according to temperature. In mid-July, the temperature on a clear day rose to 45℃ in rain-shelter plastic greenhouse of side vents. Pollen germination and pollen tube elongation on stigma were normal for 3 hours on 30, 35℃. Fertilization rate was somewhat reduced on 40℃ but Pollen germination and pollen tube elongation was good. On 45℃, fertilization rate was very poor and There was no pollen germination. Density of flower visiting insect in rain-shelter plastic greenhouse of roof and side vents was higher than that in rain-shelter plastic greenhouse of side vents. The fertilization rate on high temperature did not show any difference regardless of ventilation type. The rate of artificial cross-fertilization and airborne fertilization were high in rain-shelter plastic greenhouse of roof and side vents. It was necessary to improve airborne fertilization rate because airborne fertilization rate was significantly lower than artificial cross-fertilization regardless of ventilation type. Conclusion : When it was cultivated in rain-shelter plastic greenhouse, the reasons for the lowering of the fertilization rate were as follows. Density of flower visiting insect was low. Boxthorn, which was insect pollination crop, was needed sufficient flower visiting insect on flowering period. But it was insufficiency especially in rain-shelter plastic greenhouse of side vents. Another reason was decrease in pollen germination and pollen tube elongation. Pollen germination was suppressed in the high temperature.
        3.
        2016.10 서비스 종료(열람 제한)
        Background : Ginseng rain cover farming is expanding around Jinan county and Jangsu country of North Jeolla Province. Some farmers doing ginseng rain cover farming have suffered from difficulties due to hot weather damages. However, it is a situation that the study on mitigation techniques for high temperature damage do not exist with ginseng rain cover farming. Methods and Results : The test covering work was firstly done on April 28th for heat block film+90% black light blocking net, blue double sided film, and PE film+75% black light blocking net and when it comes to second treatment, 30% and 40% shading were implemented for heat block film group and blue double sided film group respectively and 75% black light blocking net was installed on PE film+75% shading group. When it comes to micro-climate measurement in rain cover facility, temperature, humidity and light intensity were measured during the growing period of ginseng. The results are as follows. Regarding the light transmittance (per PAR, 10 am in clear day) in facility with 1st covering, light block film covered group (LBF), blue double sided film group (BDF) and PE film group have 12.9±1.8%, has 11.6±1.0% and 27.1±1.1% respectively and after 2nd covering, in LBF groups, 30% blocking, 40% blcoking and no blocking have 10.6±1.3%, 8.2±0.9% and 12.9±1.8% and in BDF groups, 30% blocking, 40% blcoking and no blocking have 9.4±0.8%, 7.9±0.7% and 11.6±1.0 respectively and PE film group has 10.6±0.7%. Relative humidity also showed the same trend as temperature. The average monthly amount of light and maximum light intensity were lower in 30% and 40% light blocking groups of LBF and BDF and a little higher in no light blocking group compared to PE film group. The degree of high temperature damage was 1 in no LBF of BDF, but no LBF of LBF was so bad like 3. However, there was no high temperature damage in the test groups of blocking films or BDF with 30% and 40% light blocked light screens. Regarding root weight, all secondly treated groups of LBF group and BDF group were lighter compared to 4.36g of PE film group and especially, prism sheetof no light blocking group has 2.5g and BDF of of no light blocking group has 3.21g. 30 % and 40% light blocking groups of LBF group and BDF group were light with 3.20~4.07g. Conclusion : Regarding the analysis result on micro-climate in facility with different cover materials for 2 years old ginseng in ginseng rain cover farming of Gyeonggi Province, the covering method suitable for high temperature damage mitigation in ginseng rain cover farming was that 1st covering was done by PE film+75% black light blocking net and then 75% black light blocking net is additionally covered at a time when outside temperatures reaches 30℃.
        4.
        2016.05 서비스 종료(열람 제한)
        Background : Acreage of rain-shelter plastic greenhouse to prevent anthrax is being gradually increased according to growing importance of safe Boxthorn production. But When Boxthorn is grown in the hot season in rain-shelter plastic greenhouse, quantity of Boxthorn decreases. therefore the research was carried out to investigate Fertilization mode. Methods and Results : Chungwoon was very strong self-incompatibility. Chengyangjaerae, Chengyang18 and CBP11542-206 was self-compatibility. Artificial fertilization rate was slightly higher in roof and side vents than in side vents of rain-shelter plastic greenhouse in hot season. Pollen sterility due to high temperature is not critical because artificial fertilization rate was high in side vents of rain-shelter plastic greenhouse in hot season. Airborne fertilization rate was significantly lower in all varieties. Open fertilization rate was higher in roof and side vents than in side vents of rain-shelter plastic greenhouse Conclusion : Roof and side vents was good in compared to side vents in rain-shelter plastic greenhouse of Boxthorn because of high Airborne and open fertilization rate. Self-compatibility varieties were better than self-incompatibility varieties in rain- shelter plastic greenhouse because of high open fertilization rate.