The purpose of this study is to compare and analyze the conventional constant-speed compressor driven by an induction motor and the BLDC-applied capacity variable compressor in order to improve the energy efficiency of the refrigeration system. Through this study, it was found that, when a reciprocating hermetic compressor is operated, more power is consumed than a BLDC compressor due to the consumption of current through the instantaneous starting capacitor when operating at a constant voltage than a BLDC compressor.
In this theoretical study, a design and performance analysis theory of a micro flowrate and high pressure air-compressor is developed. The governing equations are from the gas state equation and fluid dynamic theories because the working fluid in the air compressor is in a gas phase. A case study was conducted to design a reciprocating type of air compressor which the target performance was 0.6liter/min in the volume flowrate with 5atg in air pressure at 1,600rpm rotational speed. Geometrical size of the model air compressor designed is 10mm in stroke, 20mm in bore with 4.79 compression ratio. From the performance analysis of the model compressor, it was found that the air volume flowrate produced was 0.6liter/min with 5.81atg in pressure. The design theory of a micro-size high-pressure air compressor developed in this study is expected to be very useful design tools in NANO technology industry.
왕복동식 압축기에서 피스톤과 커넥팅로드는 중요한 부분이다. 이러한 주요부에 기계적 부하가 과도하게 가해지면 해당 기부 속이 손상될 수 있으며, 교체하기도 쉽지 않고 비용도 많이 든다. 따라서 내구성과 수명에 영향을 미치는 요인을 분석할 필요가 있다. 본 연구의 주요 목적은 피스톤과 커넥팅로드의 최대 응력 집중 위치를 확인하는 것이다. 이를 위해 설계된 공기압축기의 작업 공정의 동적 계산을 기반으로 피스톤 및 커넥팅로드의 응력 분석을 수행하였다. 공기압축기의 피스톤과 커넥팅로드의 3 차원 모델을 따로 설계하고, 이러한 부품들의 유한요소 해석은 수치해석적인 근사해법을 사용하였다. 피스톤은 열 경계 조건 없이 크랭크 샤프트의 각도에 따라 압 력 부하를 받는다. 시뮬레이션 결과는 피스톤과 커넥팅로드의 응력 집중 위치와 그 값을 예측하고 추정할 수 있다. 그 결과 크랭크 각도 135°와 225°에서 피스톤은 190MPa, 커넥팅로드는 123MPa 이상의 최대 등가응력이 나타났으며 이는 인장 항복강도 이하의 값이다. 또한, 커넥팅로드와 피스톤에 계산 된 안전 계수는 1보다 높게 나타났다. 더욱이, 이러한 결과는 왕복동 공기압축기 제작사에 피스톤 및 커넥 팅로드를 설계함에 있어서 최적화를 위한 참고 자료로 활용 될 수 있다.
Air compressor is an important facility with electric power in the industry. However, because of the noise and vibration of air compressor and is installed outside the building management difficulty. In this study, MCP (Micro Control Processor) to remote monitoring of the air compressor via the compressed air through improved quality and allows stable maintenance were designed.
So, increase the productivity improvement of energy-saving effect can be obtained. Remote real-time information stored on your PC to manage air compressor equipment was higher reliability. Monitoring system is developed in this study was applied to embedded systems. It is easy to install air compressor, and low maintenance costs was to raise the economic impact.
To enhance the reliability of a newly designed reciprocating compressor applied in a domesticcompressor, accelerated life tests were developed using new definitions of the sample size and the B1 life index.In 1st accelerated life testing, the compressor was locked due to the fracture of the suction reed valve. Thefailure modes and mechanisms of the suction reed valve in the accelerated tests were found to be similar tothat of the failed product in the field. The root cause of the failure was the overlap between the suction reedvalve and the valve plate in the suction port. The missing parameters in the design phase were modified byexpanding the trespan size, introducing tumbling process, changing the material and thickness for the valve,introducing a ball peening and brushing process for the valve plate. In 2nd accelerated life testing, thecompressor was locked due to the interference between the crank shaft and thrust washer. The corrective planwas to heat treat the crank shaft. The B1 life of the compressor improved from 1.5 to 12.9 years.