검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Various kinds of friction materials were manufactured by adding 10%, 20%, and 30% of reduced iron, respectively, which has been obtained during the reduction process of blast furnace sludge extracted from the blast furnace, and its iron oxide, instead of existing barium sulfate(BaSO4) among the components of automobile brake friction materials. Fundamental physical property test and friction performance test, etc., using a brake dynamometer were carried out against these friction materials. Furthermore, when the expensive filling material, BaSO4 was substituted by reduced iron and added to the friction material, the added content of reduced iron for an excellent friction characteristic considering the heat emission temperature, wear, etc., was 10%. In the fundamental physical property test, as the added content of blast furnace sludge or reduced iron increased, and as the content increased, the shear strength and bonding strength of friction materials decreased, but both of them indicated sufficient strengths to be applied to a friction material. Even in the frictional performance test using a brake dynamometer, as the added content of blast furnace sludge or reduced iron increased, the friction coefficient reacted insensibly to brake deceleration, and its stability was improved.
        4,000원
        2.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Graphene and Fe3O4 were bound by electrostatic attraction and prepared by effective reduction through microwave treatments. As a result of fabricating graphene with Fe3O4 as a composite material, it has been confirmed that it contributes to the structural improvement in graphene stabilization and at the same time, it shows improved electrochemical performance through improved charge transfer. It was also confirmed that the crystalline Fe3O4 was uniformly dispersed in the rGO sheet, effectively blocking the reaggregation due to the van der Waals interaction between the neighboring rGO sheets. The structural analysis of prepared composites was confirmed by transmission electron microscopy, and X-ray diffractometer. Electrochemical properties of composites were studied by cyclic voltammetry, galvanostatic charge–discharge curves, and electrochemical impedance spectroscopy. The Fe3O4 (0.4 M)/rGO composite showed a high specific capacitance of 972 F g−1 at the current density of 1 A g−1 in 6 M KOH electrolyte, which is higher than that of the pristine materials rGO (251 F g−1) and Fe3O4 (183 F g−1). Also, the prepared composites showed a very stable cyclic behavior at high current density, as well as an improvement in comparison with pristine materials in terms of resistance.
        4,000원
        3.
        2006.04 구독 인증기관·개인회원 무료
        The filling property of the binder treated iron based powder made of atomized iron powder was compared with that of the one made of reduced iron powder. The latter one showed a better filling property than the former one, although the original reduced powder showed a worse flow rate. Changing the particle size distribution of the original atomized powder from wide to narrow like the original reduced iron powder, improved the filling property of the binder treated powder. As a result, the particle size distribution of the original iron powder was found to strongly affect the filling property of the binder treated powder.
        4.
        2006.04 구독 인증기관·개인회원 무료
        X-ray analysis on iron ores and reduced iron powders revealed that the main acid-insoluble substances were hexagonal and tetragonal quartz, another substances were sillimanite, alumina-silicate, an unnamed zeolite, all contained Si and Al. Their particle size was in the range of . Statistics analysis showed that the AIC for high-grade magnetite powder was ) during the latest five months. The predicting value for reduced iron powder should be 0.179%. However, the testing value for reduced iron powder was . The limited difference of 0.013% might imply rare pollution coming from the reduction and milling processes. The most important step for control AIC should be the separation process of iron ore powders.