This is to show some basic data for introducing both circulated aggregate and recycled powder producing waste concrete. Standard-mixing design for 24MPa has been basically used and added and replaced normal aggregate with recycled powder made of waste concrete. In addition, polycarboxylate high-range water reducing agent has been used because recycled powder is missing adhesive strength and it is not compare with cement's adhesive strength. Compressive strength with powder mixture of 2%, 4%, 6%, 8%, and 10% has been decreased down to 80% of normal concrete material strength without recycled powder mixture. 200℃, 400℃ and 600℃ heated concrete were compressively tested in order to find out concrete strength resistant to high temperature. heat capacity was also tested, based on the expectancy of its low conductivity. In addition, thermal conduction test was tested in order to find out concrete insulation. According to this test, when concrete was tested by fire resistance, it using the circulation aggregate was same resulted by concrete using the natural aggregate. also, recycle powder was not effecting insulation performance. but it is fit to standard on concrete insulation of building law.
For a sustainable development, the resources circulation system should be established and required alternative logistics area of enterprises. In this paper, we are to suggest a direction through analysis effects, and reduce, recycle, reuse factor of tra
The purpose of this study is to examine the actual condition of environment conscious logistic system which is essential to make material recycling economic society. Environment conscious logistic management which meant simply recycle is tend to promote m
국내 태양광 시장은 정부의 주도하에 2006년 이후 연평균 50% 이상의 성장률을 보이며 급성장 하였다. 2006년에 22MW였던 태양광 시장은 2012년, 그보다 10배 이상인 279MW의 규모에 이르렀고 2013년에는 330MW가 설치되었다. 그 결과 2006년 36MW에 불과하였던 국내 태양광 누적 설치용량은 6년만인 2012년에 1GW를 돌파하였다. 기존 연구결과를 통해 유추한 결과 폐 태양광 모듈의 발생 시기는 태양광 모듈 수명이 2000년 이전의 생산제품은 10년, 2001년∼2010까지의 생산제품은 15년, 2011년 이후의 생산제품에 대해서는 20년이라고 가정할 때에 대략 2020년 정도가 될 것으로 추측된다. 생산과정에서 발생한 폐 모듈은 물론 기존에 설치된 모듈의 효율저하, 제조시의 불량 및 새로이 개발된 고효율(발전효율 18%이상)패널로의 교체로 모듈의 평균수명이 낮아져 매년 폐기되는 모듈의 양은 기하급수적으로 증가할 것으로 예상된다. 현재까지 처리된 폐 모듈의 양도 최소 5MW으로 추측되며, 2020년부터 처리해야 할 폐 모듈의 양은 백MW단위로, 많은 양의 폐기물이 배출될 것이라 본다. 아직까지 우리나라는 자원 재생에 대한 인식이 부족하여 여러 가지 문제에 당면해 있는 실정이다. 우리나라는 전국적인 회수 체계가 미흡하고 재활용 인식이 낮아 수거자체가 어려울 뿐만 아니라, 도시 광산은 서비스업으로 분류되어 있어 산업단지 내 공장설립이 제한되어 있고, 그 절차 또한 복잡하고 오랜 시간 기다려야하기 때문에 접근이 쉽지 않다. 이에 본 연구는 폐 PV모듈(Photovoltaic module)에서 추출한 저 철분 강화유리 분말을 이용한 콘크리트용 혼화재로서의 활용가능성 알아보고, 최근 환경문제로 대두되어 있는 산업폐기물의 건설 순환자원으로의 재활용방안을 제시하고자 함이 목적이다.
The flow of products containing valuable metal resources after discharging to waste means that it is necessary to form a plan to improve resource circulation to enhance the circulation of metal resources. In this study, waste resource circulation flow analysis of products containing cobalt and palladium after disposal was performed by classifying five stages: (1) discharge/import, (2) collection/discarding, (3) pretreatment, (4) resource recovery, and (5) product production/export. The mobile phone was one of products which were the most generating cobalt. Discharged cobalt was kept for processing or was produced as pure cobalt, cobalt oxide, or cobalt sulfate, and was used as a raw material for locks, speakers, AlNiCo magnets, tire, batteries, etc. The total amount of cobalt in the waste products was 994 tons and the recycling rate was 53.7%, indicating that 543 ton of cobalt was recycled. Palladium was discharged from waste electrical and electronic products, precious metals, petrochemical catalysts, vehicles catalysts at the end of their life, and medical equipment (dental). The palladium recovered by pre-treatment and resource recovery was recycled as a metal resource or exported. The amount of palladium recycled was 2.412 tons, of which a total of 2.512 or 96% tons is estimated to be recycled. Future research may be necessary to suggest institutional improvements, including the waste resource classification and market expansion for the recycling in the five steps based on the results of this study.
Waste deposit & refund system was performed in order to recycle the waste since 1992, and this system developedinto the EPR (Extended Producer Responsibility) system since 2003 in Korea. Many products and packaging materialsare recycled by this system, and government published the ‘EPR Practical Manual (2007)’ to estimate the actual recyclingrate. According to styrofoam-buoy (SB) included EPR item in 2010, SB does not practical to estimate the recycling rate,EPS (Expanded Poly-Styrene) was recycled only. So in this study, SB recycling rate also includes ‘EPS+parts’ was toestimate through the field investigation. As a results, parts portion of SB are 3.49% when manufactured, and 2.03% whenrecycled. And process loss, contaminant content, parts portion and yield of EPS ingot are 0.00%, 64.28%, 0.71% and35.01% in SB recycling, respectively. In the future SB recycling rate is calculated by adding the EPS ingot productionand parts recovered.