Roads in Korea are equipped with PMS (Pavement Management System) computation data that runs on highway, national highway and municipal road. PMS is a program that selects and manages the road pavement optimal maintenance alternative as a indicator of the road pavement structural and functional performance. PMS is a system that has been developed for the primary purpose of maintaining the structural performance of road pavement, and so far does not include any indicators associated with the safety of road users. However, the road cave-in, which have recently become an issue on social networking sites, mass-media, and other issues, should pose systematically because it can make a safety risk to road users, and in particular lead to the structural and functional failure of the PMS program in view of the road pavement. Accordingly, this research has developed a practical use case for developing an integrated road cave-in management program based on the results of various studies on the exploration, analysis, assessment and handling of the existing road cave-in in Korea.
PURPOSES : The objective of this research is establishing system components and optimizing operational procedures in order to systematically manage road cave-ins in urban areas.METHODS: Based on the literature review and alternative comparison, optimization methods is suggested.RESULTS : Throughout the study, location referencing system, database structure, and operation strategy(procedure) were clarified, and the optimization methods for each item were suggested.CONCLUSIONS: Road cave-in management should be focused on user safety rather than focusing on economic aspects. The occurrence of road cave-in should be addressed thoroughly by road management system(location referencing system, database structure, and operation strategy(procedure), and the optimization methods), since they are closely related to road users' safety.
PURPOSES : The objective of this study is to evaluate the potential risk level of road cave-ins due to subsurface cavities based on the deflection basin measured with falling weight deflectometer (FWD) tests. METHODS: Ground penetrating radar (GPR) tests were conducted to detect road cavities. Then FWD tests were conducted on 13 pavement test sections with and without a cavity. FWD deflections and a deflection ratio was used to evaluate the effect of geometry of the cavity and pavement for road cave-in potentials. RESULTS: FWD deflection of cavity sections measured at 60 cm or a closer offset distance to a loading center were 50% greater than more robust sections. The average deflection ratio of the cavity sections to robust sections were 1.78 for high risk level cavities, 1.51 for medium risk level cavities, and 1.16 for low risk level cavities. The relative remaining service life of pavement with a cavity evaluated with an surface curvature index (SCI) was 8.1% for the high level, 21.8% for the medium level, and 89.8% compared to pavement without a cavity. CONCLUSIONS : FWD tests can be applied to detect a subsurface cavity by comparing FWD deflections with and without a cavity measured at 60 cm or a closer offset distance to loading center. In addition, the relative remaining service life of cavity sections based on the SCI can used to evaluate road cave-in potentials.
PURPOSES: This study identifies the causes and the mechanism of the occurrence of underground cavities. METHODS: A case study on cave-in and a series of model tests with a small soil chamber were conducted. RESULTS: A hypothesis about the mechanism of the cave-in in road was established, and the basic influencing factors on underground cavity expansion were identified. CONCLUSIONS: It was found that the characteristics of shear strength of soil and direction of water flow had a larger influence on cavity formation and expansion than the characteristics of internal erosion. In addition, large cavities suddenly expanded when cavities were caused owing to breakage of buried sewer pipe.
It is known that sewer problems are the major causes of road cave-in. The objective of this study is to analyze the risk of road cave-in due to storm sewer laterals. We investigated 174 storm sewer laterals using a zoom camera at O-dong area in Seoul. The causes of road cave-in were classified into five cases: breakage of rigid pipe, deformation of flexible pipe, out of pipeline alignment, changing pipe material or changing pipe diameter, and a poor linkage between lateral and sewer. In addition, all defects were sorted into five grades based on the severity rating at storm sewer laterals. In this study, the most fragile pipe materials were found to be concrete pipe and polyethylene pipe, which recorded 2.3 and 1.69 defect rates. With regard to the causes of road cave-in, deformation of flexible pipe has a large influence on road cave-in at present. On a long-term basis, the two causes, out of pipeline alignment and a poor linkage between lateral and sewer, could have more influence on road cave-in.