The properties of SOFC unit cells manufactured using the decalcomania method were investigated. SOFC unit cell manufacturing using the decalcomania method is a very simple process. In order to minimize the ohmic loss of flattened tube type anode supports of solid oxide fuel cells(SOFC), the cells were fabricated by producing an anode function layer, YSZ electrolyte, LSM electrode, etc., on the supports and laminating them. The influence of these materials on the power output characteristics was studied when laminating the components and laminating the anode function layer between the anode and the electrolyte to improve the output characteristics. Regarding the performance of the SOFC unit cell, the output was 246 mW/cm2 at a temperature of 800˚C in the case of not laminating the anode function layer; however, this value was improved by a factor of two to 574 mW/cm2 due to the decrease of the ohmic resistance and polarization resistance of the cell in the case of laminating the anode function layer. The outputs appeared to be as high as 574 and 246 mW/cm2 at a temperature of 800˚C in the case of using decalcomania paper when laminating the electrolyte layer using the in dip-coating method; however, the reason for this is that interfacial adhesion was improved due to the dense structure, which leads to a thin thickness of the electrolyte layer.
SOFC (Solid Oxide Fuel Cell) Ni-YSZ anode was fabricated by the spark plasma sintering (SPS) process and its microstructure and electrical properties were investigated in this study. The spark plasma sintering process was carried out at for holding time of 5 min under 40 MPa. To fabricate Ni-YSZ anode, the SPS processed specimens were reduced at under atmosphere. The reduced specimens showed relative density of according to sintering temperature. And also, the electrical conductivity of reduced specimens after sintering at 900 and showed (S/cm) values at the measuring range of .