Background: Although the scapular posterior tilt movement could facilitate the lower trapezius (LT) muscle activity, no study identified the effects of the scapular posterior tilt movement on the selective activation of the LT muscle during prone shoulder extension.
Objectives: To examine the influences of additional scapular posterior tilt on electromyography (EMG) of the upper trapezius (UT) and the LT muscles during prone shoulder extension.
Design: Cross-sectional study.
Methods: There were 15 asymptomatic male participants in this study who performed prone shoulder extension with and without scapular posterior tilt movements. For the scapular posterior tilt movements, participants performed visual biofeedback training for scapular movement using motion sensor. During the exercises, the EMG activity of the UT and LT was recorded using surface EMG system.
Results: The EMG activity of the LT significantly increased during prone shoulder extension with scapular posterior tilt compared to that of general prone shoulder extension, whereas that of the UT was not significantly different between the two exercises. Moreover, scapular posterior tilt application significantly decreased UT/LT muscle activity ratio.
Conclusion: Scapular posterior tilt movement may be emphasized during exercise when facilitating LT muscle activation.
The present study examined the effects of functional electrical stimulus( group 1), proprioceptive neuromuscular facilitation(group 2) and combined training of functional electrical stimulus and proprioceptive neuromuscular facilitation(group 3) with scapula adductor muscles on scapula movement, upper limb function and gait in fifteen subjects stroke patients. The training was thirty minutes a day, five times a week for six weeks, obtained result as follow, upper limb function was significant difference in the group 2(p<.05) but no significant difference in other groups. The change of weight bearing were significant difference in all the groups(p<.05), and increase of gait velocity were significant difference in all the group(p<.05). In conclusion, when applied with functional electrical stimulus, proprioceptive neuromuscular facilitation and combined training to the scapular adductor muscles, it was oberved in the course of the experiment that proprioceptive neuromuscular facilitation was the most effective treatment among the three methods applied to the scapula adductors.