The seismic safety of nuclear power plants has always been emphasized by the effects of accidents. In general, the seismic safety evaluation of nuclear power plants carries out a seismic probabilistic safety assessment. The current probabilistic safety assessment assumes that damage to the structure, system, and components (SSCs) occurs independently to each other or perfect dependently to each other. In case of earthquake events, the failure event occurs with the correlation due to the correlation between the seismic response of the SSCs and the seismic performance of the SSCs. In this study, the EEMS (External Event Mensuration System) code is developed which can perform the seismic probabilistic safety assessment considering correlation. The developed code is verified by comparing with the multiplier n, which is for calculating the joint probability of failure, which is proposed by Mankamo. It is analyzed the changes in seismic fragility curves and seismic risks with correlation. As a result, it was confirmed that the seismic fragility curves and seismic risk change according to the failure correlation coefficient. This means that it is important to select an appropriate failure correlation coefficient in order to perform a seismic probabilistic safety assessment. And also, it was confirmed that carrying out the seismic probabilistic safety assessment in consideration of the seismic correlation provides more realistic results, rather than providing conservative or non-conservative results comparing with that damage to the SSCs occurs independently.
설계기준을 초과하는 지진 재해는 원자력 시설물에 상당한 위험을 유발할 수 있다. 이러한 위험성을 확률론적으로 정량화 하는 방법이 확률론적 지진 안전성 평가(seismic probabilistic safety assessment)이다. 이에 따라 지진 PSA는 국내외 다수의 원자력 발전소에 적용되어 지진 재해에 대한 원전의 안전성을 확률론적으로 평가하고 이에 대비토록 하고 있다. 그러나 원전에 비해 상대적으로 규모가 작은 연구용 원자로와 같은 경우에는 지진 PSA가 적용된 예가 거의 없다. 따라서, 본 연구에서는 지진 PSA기법을 실제 완공된 연구로에 적용하여 안전성을 분석하였다. 또한, 이를 바탕으로 연구로를 구성하는 시 스템의 지진 내력에 대한 최적화 연구를 수행하였다. 그 결과, 지진 재해 하에서 연구로에 발생할 수 있는 노심 손상 가능성을 정량화하였고, 현재 설계안과 비교하여 적은 비용으로 최대의 안전성을 확보하는 최적 지진 내력 분포를 도출하였다. 이 러한 결과는 향후 지진에 대비하여 연구로 안전성을 효과적으로 제고할 수 있는 정량적 지표로 활용할 수 있을 것으로 판단 된다.
Seismic intensity deduced from instrumental data has been evaluated using the empirical relationship between intensity and peak ground acceleration (PGA) during an earthquake. The Japan Meteorological Agency (JMA) developed a seismic intensity meter, which can estimate the real-time seismic intensity from seismic motions observed at a local site to evaluate the damage during the earthquake more correctly. This paper proposes a practical application of the JMA intensity to dams during the 2013 earthquake in Yeongcheon, Korea. In the present paper, seismic intensity was estimated from the relationships between accelerations observed at Yeongcheon Dam. Estimated seismic intensities were in the range of 0 to 3, which was verified from the displacements of dams and the variation of the ground water level observed at Yeongcheon dam during the earthquake. The JMA intensity, which is determined by considering the frequency, duration of cyclic loading, etc., was 0 (zero) and there was no damage to Yeoncheon dam during the earthquake.
교량, 항만 및 각종 구조물과 산업설비에 대한 설계는 주로 결정론적 해석방법(Deterministic Analysis)에 의해 수행되고 있다. 그러나 구조물에 내재된 확률변수의 불확실성에 대한 영향을 보다 명확하게 평가할 뿐만 아니라 경제적인 설계를 위해서는 보다 개선된 평가방안이 요구된다. 이 연구에서는 터빈발전기 기초를 대상으로 합리적인 설계를 위해 확률유한요소법을 이용한 구조신뢰성해석을 수행하였다. 이를 위해 확률유한요소법을 신뢰성이론에 적합하도록 정식화하였으며, 대상 구조물의 부재강성 및 지진하중 등을 확률변수로 고려하여 동적응답해석 및 구조신뢰성해석을 효율적으로 수행할 수 있는 개선된 해석프로그램을 작성하였다. 작성된 해석프로그램을 이용하여 주요부재의 변위 및 부재력 응답에 대한 분산특성을 검토하였다. 아울러, 구조신뢰성해석에 따른 신뢰성지수 및 파괴확률을 제시함으로써, 대상 구조물의 구조 안전성을 정량적으로 평가하였다. 이 연구결과는 향후, 터빈발전기 기초의 개선된 설계방안을 설정함에 있어 기초자료를 제공할 것으로 기대된다.
과거 지진가속도계측기는 “지진·화산재해대책법” 제6조, 제7조에 따라 2010년 고시된 “지진가속도계측기 설치 및 운영기준”에 의거 시설물 관리주체가 설치 및 운영 되었다. 하지만 시설물 관리주체에서는 구조물별 가속도 관측을 수행하고 있으나 지진 발생 시, 이를 활용하지 않거나 최대 가속도 데이터만 저장, 이용하고 있는 실정으로 데이터의 활용도를 제고할 수 있는 방안 마련의 필요성이 제기되었다. 따라서 “지진가속도 응답신호를 활용한 공공시설 안전관리 기술개발” 연구를 통해서 지진가속도 응답신호 종합분석 시스템이 개발되었다. 하지만 안전성평가를 위한 연구는 “지진가속도계측기 설치 및 운영기준” 제9조에서 정의하는 9개항의 시설물 중 건축물에 해당하는 시설물에 제한적으로 적용되었기에 추가적인 연구가 필요한 실정이다.
일정 규모 이상의 사장교와 현수교에는 자유장, 주탑, 보강거더에 지진가속도계가 부착되어 있다. 이 연구에서는 부착된 센서를 활용하여 지진발생 시에 긴급하게 지진안전성을 평가하는 방법을 제안하였다. 표준화된 시스템으로 긴급한 평가가 이루어지므로 센서 단위의 평가가 효과적이며, 경주, 포항지진에 대한 특수교량의 데이터 분석을 통하여 평가 방안을 도출하였다. 자유장, 교각기초, 앵커리지와 같이 지반 또는 지반과 인접한 위치에 설치된 가속도계는 최대가속도로 평가를 수행하고 주탑상부, 보강거더 등 구조물에 부착된 가속도계는 가속도의 변환을 통한 변위비교로 평가를 수행하는 것을 제안하였다.
최근 한반도 지진 발생 회수, 규모 증대 및 전과 다른 내륙에서 발생 등, 외적으로는 지진 하중의 위험성이 증가하고 있으며, 이와 더불어, 국내 사회기반시설물의 노후화에 따른 내적인 취약성 역시 가중 되고 있다. 지진 발생 시 긴급 대처와 유연한 대책 마련을 위한 과학적이고 합리적인 안전성 평가 기술은 시설물 자체 손상을 넘어 붕괴 시 많은 2차 피해를 야기할 수 있는 대표적인 사회기반시설인 댐 저수지 및 교량에 있어 매우 미진한 상태이다. 또한, 중요시설물의 관리 주체는 시설물별 가속도 관측을 수행하고 있으나, 설치된 장비의 성능 및 비용을 고려시 상대적 활용도가 매우 낮은 실정으로, 이러한 활용도를 제고하는 기술개발이 요구되는 상항이다.
이 연구에서는 사장교 및 현수교에 부착된 지진가속도계측기를 활용하여 교량의 안전성을 긴급하게 평가할 수 있는 기법을 제안한다. 실측된 지진가속도계측기의 상시 응답을 이용하여 구조해석 모델의 고유주파수와 비교를 통해 최대한 유사한 동적특성을 갖도록 모델링을 개선한다. 설계지진에 대한 지진해석을 수행하여 지진가속도계측기 설치 위치별 최대 변위를 도출하며, 도출된 변위는 사전에 관리기준치로서 시스템에 기 입력된다. 지진발생 시 실시간으로 측정된 가속도 시간이력을 필터링 후 2중적분을 통해 변위시간이력으로 변환한 뒤 최대 변위를 추출한다. 최종적으로 시스템에 기 입력된 관리기준치와 추출된 변위와의 비교를 통해 안전성을 평가한다. 경주지진 시 기록된 데이터를 활용한 12개 특수교량의 긴급 안전성평가 수행을 통해 제안된 방법의 적용성을 확인한다.
Earthquake safety assessment software of the cable-stayed bridge using the seismic acceleration measurement date was developed. Various safety assessment indices for evaluation structural safety and serviceability of bridges are discussed. A systematic approach is proposed to process the raw data for generating appropriate safety assessment indicators. The software for structural state evaluation includes (i) format conversion of raw data, (ii) noise filtering, (iii) generation of assessment index, (iv) state evaluation. Determination of the limit state included in the condition evaluation step is discussed and an example of the graphic user interface of the software is shown.
Earthquake safety assessment software of the cable-stayed bridge using the seismic acceleration measurement date was developed. Various safety assessment indices for evaluation structural safety and serviceability of bridges are discussed. A systematic approach is proposed to process the raw data for generating appropriate safety assessment indicators. The software for structural state evaluation includes (i) format conversion of raw data, (ii) noise filtering, (iii) generation of assessment index, (iv) state evaluation. Determination of the limit state included in the condition evaluation step is discussed and an example of the graphic user interface of the software is shown.