Multiple galvanized steel and aluminium alloy sheets were joined by self-piercing rivet(SPR) and hybrid joining(SPR + adhesive bonding). In this study, tensile-shear load and fatigue properties of multi-layer SPR and hybrid joints were investigated. Moreover, tensile-shear deformation behavior of the joints under different specimen configurations was investigated. Depending on the specimen configurations either top sheet tearing failure mode or rivet tail pull-out failure mode was observed during the tensile-shear tests. The top sheet tearing failure mode resulted in low maximum tensile-shear load, but it led to larger displacement value as compared to that in the tail pull-out failure mode. Maximum tensile-shear load of hybrid joints was about four times higher than that of SPR joints. Also, fatigue limit of hybrid joints was about two times higher than that of SPR joints.
Self-piercing riveting(SPR) is a sheet joining method that can be used for materials which are difficult or unsuitable to weld, such as aluminum alloy and different steel sheet metals. No pre-drilled hole is needed for SPR; the rivets are pushed directly into the sheets clamped together between a blank holder and a die in a press tool. In this paper, self-piercing rivet and anvil were designed for four joining conditions with dissimilar sheet metals. SPR was simulated by using commercial FEM code DEFORM-2D. In simulation of SPR process, various strengths of self-piercing rivet were considered. The mechanical properties could be determined by tensile test for quenched rivets and sheet metals. The designs of rivet and anvil were modified by comparisons of simulated results.