This study aimed to investigate the protective effect of Solanum nigum Linne total extract (SNT), Solanum nigum Linne leaf extract (SNL), Solanum nigum Linne root extract (SNR) on liver injury induced by Lipopolysaccharide(LPS) in Sprague-Dawley rats. SNT, SNL, SNR of 100 mg/kg concentration was intraperitoneally administered into rats at dose of 1.5 ml/kg for 20 days. on the day 1.5 ml/kg of LPS was injected. Four hours later, they were anesthetization with ether and dissected. Glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT) were measured in serum and superoxide dismutase (SOD), catalase and glutathione peroxidase (GPX) were measured in liver homogenate. SNT, SNL, SNR extract inhibited GOT and GPT activities in LPSinduced rats, whereas increased SOD, Catalase and GPX activity in liver tissue of LPS-induced rats. These suggested that SNT, SNL, SNR could be used for functional beverage.
In this study, we investigated the variation in free sugars, organic acids, antioxidant activity and anti-inflammatory effect of Solanum nigrum Linne fruits according to harvest time. Four kinds of free sugars (fructose, glucose, sucrose, maltose) were detected in S. nigrum fruit, and the free sugar contents varied significantly with harvest time. Organic acid content of S. nigrum fruit showed the highest in malic acid and acetic acid, and the highest content of total organic acids was found in S. nigrum fruit harvested on October 18th and October 25th. For the total polyphenol content, S. nigrum fruit harvested on October 18th was the highest. The strongest DPPH and ABTS radical scavenging activity was showed in S. nigrum fruit harvested on October 11th and October 18th. The anti-inflammatory activity and antioxidant effects were the highest in the ethanol extract from S. nigrum fruit collected on October 18th and October 11th. Thus, it seems the best to harvest of S. nigrum fruit harvested on October 11th and October 18th.
In this study, we investigated the variation in free sugars, amino acids, antioxidant activity, and anti-inflammatory activity of Solanum nigrum Linne based on harvest time. Major amino acids identified by HPLC analysis were proline, histidine, and serine. The highest content of total amino acids were found in S. nigrum aerial parts and roots harvested on July 10th and August 10th. Four kinds of free sugars (fructose, glucose, sucrose, maltose) were detected in S. nigrum, and the free sugar content varied significantly with harvest time. The fructose content of S. nigrum decreased with as harvest time increased. The total polyphenol content of S. nigrum was highest in those harvested on August 30th. The antioxidant activity of ethanol extract from S. nigrum collected at different harvest times were measured by DPPH and ABTS radical scavenging assays. The anti-inflammatory activity of these extracts were assayed via nitric oxide suppression in C6 glioma cells with a lipopolysaccharide (LPS)-induced inflammatory response. The anti-inflammatory activity and antioxidant effects were the highest in the extract from S. nigrum collected on August 30th. Good correlations were observed between antioxidant and anti-inflammatory activities in ethanol extract of S. nigrum roots harvested on August 30th.