HA (hydroxyapatite)/β-TCP (tricalcium phosphate) biomaterial (BCP; biphasic calcium phosphate) is widely used as bone cement or scaffolds material due to its superior biocompatibility. Furthermore, NH4HCO3 as a space holder (SH) has been used to evaluate feasibility assessment of porous structured BCP as bone scaffolds. In this study, using a spark plasma sintering (SPS) process at 393K and 1373K under 20MPa load, porous HA/β-TCP biomaterials were successfully fabricated using HA/β-TCP powders with 10~30 wt% SH, TiH2 as a foaming agent, and MgO powder as a binder. The effect of SH content on the pore size and distribution of the BCP biomaterial was observed by scanning electron microscopy (SEM) and a microfocus X-ray computer tomography system (SMX-225CT). The microstructure observations revealed that the volume fraction of the pores increased with increasing SH content and that rough pores were successfully fabricated by adding SH. Accordingly, the cell viabilities of BCP biomaterials were improved with increasing SH content. And, good biological properties were shown after assessment using Hanks balanced salt solution (HBSS).
Ceramics biomaterials are useful as implant materials in orthopedic surgery. In this study, porous
HA(hydroxyapatite)/β-TCP(tricalcium phosphate) composite biomaterials were successfully fabricated using HA/β-TCP powders with 10-30 wt% NH4HCO3 as a space holder(SH) and TiH2 as a foaming agent, and MgO powder as a binder. The HA/β-TCP powders were consolidated by spark plasma sintering(SPS) process at 1000 oC under 20 MPa conditions. The effect of SH content on the pore size and distribution of the HA/β-TCP composite was observed by scanning electron microscopy(SEM) and a microfocus X-ray computer tomography system(SMX-225CT). These microstructure observations revealed that the volume fraction of the pores increased with increasing SH content. The pore size of the HA/β-TCP composites is about 400-500 μm. The relative density of the porous HA/β-TCP composite increased with decreasing SH content. The porous HA/β-TCP composite fabricated with 30%SH exhibited an elastic modulus similar to that of cortical bone; however, the compression strength of this composite is higher than that of cortical bone.
Titanium and its alloys are useful for implant materials. In this study, porous Ti-Nb-Zr biomaterials were successfully synthesized by powder metallurgy using a NH4HCO3 as space holder and TiH2 as foaming agent. Consolidation of powder was accomplished by spark plasma sintering process(SPS) at 850˚C under 30 MPa condition. The effect of high energy milling time on pore size and distribution in Ti-Nb-Zr alloys with space holder(NH4HCO3) was investigated by optical microscope(OM), scanning electron microscope(SEM) & energy dispersive spectroscopy(EDS) and X-ray diffraction(XRD). Microstructure observation revealed that, a lot of pores were uniformly distributed in the Ti-Nb-Zr alloys as size of about 30-100μm using mixed powder and milled powders. In addition, the pore ratio was found to be about 5-20% by image analysis, using an image analyzer(Image Pro Plus). Furthermore, the physical properties of specimens were improved with increasing milling time as results of hardness, relative density, compressive strength and Young's modulus. Particularly Young's modulus of the sintered alloy using 4h milled powder reached 52 GPa which is similar to bone elastic modulus.
In this study, porous titanium samples were manufactured by space holder methods using two kinds of urea and sodium chloride space holders. Three-dimensional pore structures were obtained by a computed-tomography (CT) tech- nique and utilized for finite element analysis in order to investigate the mechanical properties. The CT-based finite ele- ment analyses were in better agreement with the experimental results than unit cell model-based analyses. Both the experimental and CT-based results showed the same tendency that the elastic modulus decreased with increasing the porosities. The total porosity of the bulk body plays a key role in determining the elastic modulus of porous materials.
This study was performed to fabricate the porous titanium foam by space holder method using NaCl powder, and to evaluate the effect of NaCl volume fractions (33.3~66.6 vol.%) on the porosities, compressive strength, Young's modulus and permeability. For controlling pore size, CP titanium and NaCl particles were sieved to different size range of 70~150 and 300~425 respectively. NaCl of green Ti compact was removed in water followed by sintered at for 2 hours. Total porosities of titanium foam were in the range of 38-70%. Pore shape was a regular hexahedron similar that of NaCl shape. Porous Ti body showed that Young's modulus and compressive strength were in the range of 0.6-6 GPa and 8-127 MPa respectively. It showed that pore size and mechanical properties of Ti foams was controllable by NaCl size and volume fractions.