검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to improve the stack effect of the staircase and the failure to take into account the opening of the outside door of the staircase, which are the disadvantages of the existing smoke control only vestibule. As a result of the study, the new vestibule and the staircase simultaneous smoke control are equipped with an exhaust flap damper with an effective opening area of about 0.25 m² in the upper part of the staircase, and a ventilator-type air supply fan of about 5 m³/s in the lower part, and take measures to prevent overpressure in the staircase. If you use the new simultaneous smoke control method of the vestibule and staircase, you can achieve the following effects. First, it is possible to open the external entrance door. Second, it can reduce the stack effect. Third, the staircase door closes automatically without fail. And a new method of preventing overpressure was proposed for the vestibule.
        4,000원
        2.
        2020.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this paper, we investigated the effect of the passivation stack with Al2O3, hydrogenated silicon nitride (SiNx:H) stack and Al2O3, silicon oxynitride (SiONx) stack in the n type bifacial solar cell on monocrystalline silicon. SiNx:H and SiONx films were deposited by plasma enhanced chemical vapor deposition on the Al2O3 thin film deposited by thermal atomic layer deposition. We focus on passivation properties of the two stack structure after laser ablation process in order to improve bifaciality of the cell. Our results showed SiNx:H with Al2O3 stack is 10 mV higher in implied open circuit voltage and 60 μs higher in minority carrier lifetime than SiONx with Al2O3 stack at Ni silicide formation temperature for 1.8% open area ratio. This can be explained by hydrogen passivation at the Al2O3/Si interface and Al2O3 layer of laser damaged area during annealing.
        4,000원
        3.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The emission of odor, characterized by the combustion conditions and biomass types resulting from the use of a biomass incinerator, was analyzed. The following biomass types were considered: bark, board waste, sawdust, wood flour, wood fiver, wastewater sludge, and timber wastewater. As a study method, the physico-chemical characteristics of each biomass type were analyzed to predict the potential substances that might be emited under incomplete combustion conditions. And, the emission components of odor emission by biomass were analyzed at the laboratory level using a combustion device. In addition, the characteristics of the contaminant (odor) emission per mixture ratio of biomass were analyzed in a stoker incinerator that is in operation in an actual establishment at a scale of 300 ton/day. In the biomass emission experiment using the combustion device at the laboratory level, the major substances such as Acetic acid, Styrene, Toluene, Benzene, Dichloromethane, etc. were analyzed, and these components were determined to increase odor index. VOCs measurement in the outlet of the stoker incinerator indicated that Acetaldehyde, Ethanol, Acetonitrile, Ethyl acetate, Toluene, etc. were detected as the major substances. These were similar to the emission substances presented by the experiment that had investigated emissions by biomass type. A study on the Effect of Operational Conditions in biomass stocker incinerator on the concentration of odorous materials emitted from stack showed a close relationship between the input by biomass type and urea, temperature in the incinerator, and the tendency to emit/produce odor.
        4,300원
        4.
        2012.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, FDS fire simulation experiments and measured wind speed by applying the exterior installation portion for blocking the spread of the fire was investigated. As a result, aluminum composite panels installed in the lower and the upper part of the panel to remove all the lower side, and then the maximum wind speed 0.24 m/s and the upper side 0.58 m/s were measured. In the FDS, the measured wind speed difference air currents are approximately 3.7 times in 12 seconds, the occurrence of 17 seconds early moment wind 2.2 m/s was measured from. Before and after the fire occurred in early of the air velocity about 39 seconds was 3.5 times difference. Such air currents caused by the temperature of the building but also by the building height was found. Turbulent flame of fire by expanding the vertical extent of damage become greatly important factor. Therefore, through the exterior installation portion of the block that can delay the spread of fire is expected that this should be taken.
        4,000원