검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 38

        21.
        1998.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 실험은 수확 18, 14, 11, 7, 0일전의 배양액내 질소중단이 결구상추의 생육과 품질에 미치는 영향을 조사한 것으로, 질소 중단으로 엽중 nitrate 함량은 상당량 감소하였다. 그러나 그와 동시에 생체중도 감소하였다. 수확 18일전 처리에서 결구된 겉잎의 nitrate 함량이 가장 낮았으며, 속잎은 수확 14일전 및 11일전 처리에서 가장 낮았다. 질소중단 기간이 길수록 양이온의 흡수가 저조하였다. 실험기간동안 pH는 0일전 및 7일전 처리구를 제외하고는 감소하는 경향을 보였으며, EC는 처리에 관계없이 계속적으로 증가하였다.
        4,000원
        22.
        2017.09 KCI 등재 서비스 종료(열람 제한)
        In a 12-week experiment, the rock bream, Oplegnathus fasciatus, and olive flounder, Paralichthys olivaceus, were investigated to determine the effects of starvation on their physiological parameters. The protein and DNA contents of the starved fish were significantly higher than the initial values and those of the fed fish. The RNA contents and RNA/DNA ratios of the fed fish were significantly higher than those of the other groups (P<0.05). The hematocrit, hemoglobin, red blood cells (RBC), and mean corpuscular volume (MCV) of the fed rock bream were significantly higher than at baseline (P<0.05), whereas the mean corpuscular hemoglobin concentration (MCHC) of the fed fish was lower than at baseline (P<0.05). The hematocrit, hemoglobin, RBC, and MCHC of the starved group were significantly lower than the baseline values, whereas the MCV of the starved group was significantly higher than the baseline value (P<0.05). No significant difference in alanine aminotransferase was observed between the fed fish and baseline, whereas the starved fish value was significantly higher than the baseline value (P>0.05). There were no significant differences in cortisol levels. However, the glucose level in the fed group was significantly higher than the baseline level and that in the starved group was significantly lower than the baseline level (P<0.05).
        23.
        2015.07 서비스 종료(열람 제한)
        The ubiquitin-26S proteasome system is important in the quality control of intracellular proteins. The ubiquitin-26S proteasome system includes the E1 (ubiquitin activating), E2 (ubiquitin conjugating) and E3 (ubiquitin ligase) enzymes. U-box proteins are a derived version of RING-finger domains, which have E3 enzyme activity. Here, we present the isolation of a novel U-box protein, OsUPS, from rice (Oryza sativa).The cDNA encoding the O.sativa U-box protein(OsUPS) comprises 1338bp, with an open reading frame of 445 amino acids. The open reading frame of the OsUPS protein is comprised of notable domains: a single ~70-amino acid domain and a GKL domain that contains conserved glycine, lysine/ arginine residues and leucine-rich feature. We found that full-length expression of OsUPS was up-regulated in both rice plants and cell culture in the absence of inorganic phosphate (Pi). A self-ubiquitination assay indicated that the bacterially expressed OsUPS protein had E3 ligase activity, and subcellular localization results showed that OsUPS was located in the chloroplast. Suppression of OsUPS resulted in servre signs of toxicity caused by the over-accumulation of Pi. These results support the notion that OsUPS plays an important role in the Pi signaling pathway through the ubiquitin-26S proteasome system.
        24.
        2015.07 서비스 종료(열람 제한)
        To identify novel signaling components involved in regulation of plant responses to phosphate (Pi) starvation, we screened an Arabidopsis T-DNA activation tagging library for mutants with altered Pi-starvation responses. Here, we report the identification and characterization of novel activation-tagged mutant involved in Pi starvation signaling in Arabidopsis. The hpd (hypersensitive to Pi deficiency) mutant exhibits enhanced phosphate uptake and altered root architectural change under Pi starvation compared to wild type. Expression analysis of auxin-responsive DR5::GUS reporter gene in hpd mutant indicated that both auxin biosynthesis and auxin translocation under Pi starvation are suppressed in hpd mutant plants. Impaired auxin translocation in roots of hpd mutant was attributable to abnormal root architecture changes in Pi starvation conditions. Mis-regulation of auxin translocation in hpd mutant was further confirmed by analysis of expression patterns of auxin efflux carrier proteins, PIN-FORMED (PIN) 1, 2, and 3 fused with GFP. Not only expression levels but also expression domains of PIN proteins were altered in hpd mutant in response to Pi starvation. Molecular genetic analysis of hpd mutant revealed that the mutant phenotype is caused by the lesion in ENHANCED SILENCING PHENOTYPE4 (ESP4) gene whose function is proposed in mRNA 3’-end processing. The results propose that mRNA processing plays crucial roles in Pi homeostasis as well as developmental reprograming in response to Pi deprivation in Arabidopsis.
        25.
        2015.06 KCI 등재 서비스 종료(열람 제한)
        We assessed the effects of various dietary conditions on the growth, phenotypic traits, and morphometric dimensions of rock bream, Oplegnathus fasciatus and on the morphometric dimensions of sectioned olive flounder, Paralichthys olivaceus. Rock bream in the fed group increased in body weight, standard length, and condition factor, but these parameters decreased significantly for fish in the starved group (P < 0.05). The head connection dimensions of fish in the fed group decreased, while for starved fish there was increase in external morphometric dimensions (P < 0.05). In both species, sectioned morphometric analysis revealed that fish in the fed group had a larger body circumference and cross-cut sectional area, and greater cross-cut section height, relative to the starved group (P < 0.05).
        26.
        2013.12 KCI 등재 서비스 종료(열람 제한)
        Morphological changes in the reared rock bream, Oplegnathus fasciatus, from hatching to six days after hatching were examined during the early growth stage under starvation. All the larvae died within five days when feeding was delayed for three days after hatching. These results imply that initial larval food should be supplied within two days of hatching. Changes in the pectoral angle and the ratios of eye height to head height, gut height to standard length, and gut height to myotome height in the rock bream are alternative indicators for the identification of starving fish. These indicators might prove useful in evaluating the successful transition from endogenous to exogenous feeding in this species.
        27.
        2013.07 서비스 종료(열람 제한)
        The molecular processing of upstream regulation of Pi response genes during Pi starvation remains inadequately understood. Several transcription factor have been studied that appear to regulate subsets of the responses to Pi stress either positively or negatively. MYB genes are responsive to one or multiple type of hormone and stress treatments. In this study, cDNA of the MYB have been cloned, and we generated Rice overexpressing plants for characterization of these genes. OsMYB gene function focused on phosphate conditions with rice and Arabidopsis transgenic plants. We selected 30 - T1 transgenic lines from T0 transgenic rices. those are shown high Pi content. The Pi contents of shoots part of transgenic plants were shown 10~20% increased Pi contents than WT, whereas roots have 30% increased Pi contents. As a result, OsMYB genes affect Pi uptake in plants. To investigate interactions between MYB proteins and phosphate signaling related genes. We demonstrate that Myb-binding sites (MBSs) exist in putative promoter of OsPT transporter by analysis of bioinformatics, and its bind specific MYB transcription factor. OsMYB expression is induced by low Pi and Pi deficiency, and its overexpression plants are shown morphological phenotype in Pi stress.
        28.
        2013.07 서비스 종료(열람 제한)
        Phosphorus is one of the macronutrients essential for plant growth and development, as well as crop productivity. Many soils around the world are deficient in phosphate (Pi) that plants can utilize. To cope with the stress of Pi starvation, plants have evolved many adaptive strategies, such as changes of root architecture and enhanced Pi acquisition form soil. To understand molecular mechanism underlying Pi starvation stress signaling, we characterized the activation-tagged mutant showing altered responses to Pi deficiency compared to wild type Arabidopsis and named hsp3 (hypersensitive to Pi starvation3). hsp3 mutant exhibits enhanced phosphate transporter activity, resulting in higher Pi content than wild type. However, in root architectural change under Pi starvation, hsp3 shows hyposensitive responses than wild type, such as longer primary root elongation, lower lateral root density. Histochemical analysis using hsp3 mutant expressing auxin-responsive DR5::GUS reporter gene, indicated that auxin allocation from primary to lateral roots under Pi starvation is aborted in hsp3 mutant. Molecular genetic analysis of hsp3 mutant revealed that the mutant phenotype is caused by the lesion in ENHANCED SILENCING PHENOTYPE4 (ESP4) gene whose function is proposed in mRNA 3’ end processing. Here, we propose that mRNA processing plays a crucial role in Pi homeostasis in Arabidopsis.
        29.
        2012.07 서비스 종료(열람 제한)
        Phosphorus is one of the macronutrients essential for plant growth and development, as well as crop productivity. Many soils around the world are deficient in phosphate (Pi) that plants can utilize. To cope with the stress of Pi starvation, plants have evolved many adaptive strategies, such as changes of root architecture and enhanced Pi acquisition form soil. To understand molecular mechanism underlying Pi starvation stress signaling, we characterized the activation-tagged mutant showing altered responses to Pi deficiency compared to wild type Arabidopsis and named hsp3 (hypersensitive to Pi starvation3). hsp3 mutant exhibits enhanced phosphate transporter activity, resulting in higher Pi content than wild type. However, in root architectural change under Pi starvation, hsp3 shows hyposensitive responses than wild type, such as longer primary root elongation, lower lateral root density. Histochemical analysis using hsp3 mutant expressing auxin-responsive DR5::GUS reporter gene, indicated that auxin allocation from primary to lateral roots under Pi starvation is aborted in hsp3 mutant. Molecular genetic analysis of hsp3 mutant revealed that the mutant phenotype is caused by the lesion in ENHANCED SILENCING PHENOTYPE4 (ESP4) gene whose function is proposed in mRNA 3’ end processing. Here, we propose that mRNA processing plays a crucial role in Pi homeostasis in Arabidopsis.
        30.
        2012.06 KCI 등재 서비스 종료(열람 제한)
        Early growth, the rate of yolk sac absorption, and nucleus size in liver parenchymal cells were correlated with the nutritional status of first feeding larval haddock, Melanogrammus aeglefinus. Larvae that successfully began exogenous feeding maintained high growth rates, delayed yolk sac resorption, and had larger hepatocyte nuclear sizes than starved larvae. At 10 days post hatch (DPH) the cumulative mortality in the starved larval haddock group was 100%. The area of the hepatocyte nuclei in starved larvae gradually decreased, reaching its lowest value by 9 DPH. Our results support the current practice of providing the first food supply at 3 DPH. Hepatocyte nuclear size can be used to assess larval haddock nutrition status, and may be a good criterion for assessing the success of transition from endogenous to exogenous feeding.
        32.
        2010.10 KCI 등재 서비스 종료(열람 제한)
        Purple acid phosphatase is important for phosphorus remobilization in plants, but its role in plant adaptation to low phosphorus availability is not known. The cDNA encoding O. sativa purple acid phosphatase (OsPAP1) has 1008 bp with an open reading frame of 335 amino acid residues. The amino acid sequence of OsPAP1 cDNA shows of 50-51% identity with other plant purple acid phosphatases. OsPAP1 was expressed in rice plants and in cell cultures in the absence of phosphate (Pi). The expression was organ-specific with the strongest expression in Pi-deprived roots. Functional expression of the OsPAP1 gene in the transgenic Arabidopsis line was confirmed by northern and western blot analysis. OsPAP1 overexpression lines had higher phosphatase activity than wild-type. Overexpression of OsPAP1 in Arabidopsis plants resulted in increased Pi accumulation under Pi sufficient condition. These results show that the OsPAP1 gene represents more efficient Pi uptake and can be used to develop new transgenic dicotyledonous plants.
        35.
        2007.11 KCI 등재 서비스 종료(열람 제한)
        A phosphate starvation-induced acid phosphatase cDNA was cloned from the rice, Oryza sativa. The cDNA encoding O. sativa acid phosphatase (OsACP1) has 1100 bp with an open reading frame of 274 amino acid residues. The deduced amino acid sequence of OsACP1 cDNA showed 53% identity to tomato acid phosphatase and 46-50% identity to several other plant phosphatases. OsACP1 expression was up-regulated in the rice plant and in cell culture in the absence of phosphate (Pi). The induced expression of OsACP1 was a specific response to Pi starvation, and was not affected by the deprivation of other nutrients. OsACP1 expression was responsive to the level of Pi supply, with transcripts of OsACP1 being abundant in Pi-deprived root. The OsACP1 cDNA was expressed as a 30 kDa polypeptide in baculovirus-infected insect Sf9 cells. In addition, the OsACP1 gene was introduced into Arabidopsis via Agrobacterium mediated transformation. Functional expression of the OsACP1 gene in the transgenic Arabidopsis lines was confirmed by Northern blot and Western blot analyses, as well as phosphatase activity assays. These results suggest that the OsACP1 gene can be used to develop new transgenic dicotyledonous plants able to adapt to Pi-deficient conditions.
        38.
        1996.06 KCI 등재 서비스 종료(열람 제한)
        Granular sludge formation and it`s activity change are the most important factors in achieving successful start-up and operation of UASB reactor. Nevertheless, the detailed mechanism is still unknown. On the basic of the experiments in laboratory-scale UASB reactor, the effect of hydrogen partial pressure on sludge granulation was evaluated. Size distribution method and specific metabolic activity of the sludge with the operation time were used as a means for estimating the degree of the sludge granulation. At the constant hydrogen loading, the granulation increased as starvation periods in hydrogen supply increased, resulting in high organic removal efficiency. It was evidient that hydrogen play very important role in granulation and sludge granulation was achieved through mutual symbiosis between hydrogen utilizing bacteria and hydrogen producing bacteria under the hydrogen deficient conditions.
        1 2