검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 14

        4.
        2023.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The aim of this study is to ensure the structural integrity of a canister to be used in a dry storage system currently being developed in Korea. Based on burnup and cooling periods, the canister is designed with 24 bundles of spent nuclear fuel stored inside it. It is a cylindrical structure with a height of 4,890 mm, an internal diameter of 1,708 mm, and an inner length of 4,590 mm. The canister lid is fixed with multiple seals and welds to maintain its confinement boundary to prevent the leakage of radioactive waste. The canister is evaluated under different loads that may be generated under normal, off-normal, and accident conditions, and combinations of these loads are compared against the allowable stress thresholds to assess its structural integrity in accordance with NUREG-2215. The evaluation result shows that the stress intensities applied on the canister under normal, off-normal, and accident conditions are below the allowable stress thresholds, thus confirming its structural integrity.
        4,300원
        5.
        2023.11 구독 인증기관·개인회원 무료
        In this study, a fracture evaluation of the spent nuclear fuel storage canister was conducted. Stainless steel alloys are typically used as the material for canisters, and therefore, a separate destructive evaluation is not required for safety analysis reports. However, in this research, a methodology for conducting a destructive evaluation was proposed for assessing the acceptability of cracks detected during in-service inspections for long-term storage due to reasons such as stress corrosion cracking. For the fracture evaluation, analytical equations provided in the design code such ASME were employed, and finite element method (FEM) based linear elastic fracture mechanics (LEFM) was performed to validate the effectiveness of the analytical equations. Impact analyses such as tip-over of the storage cask on a concrete pad were performed, and the fracture evaluation using stresses resulting from the impact analysis under accident conditions and residual stresses from welds were carried out. Through this research, geometric dimensions for cracks exceeding the fracture criteria were established.
        6.
        2023.05 구독 인증기관·개인회원 무료
        There have been a variety of issues related to spent nuclear fuel in Korea recently. Most of the issues are related to intermediate storage and disposal of spent nuclear fuel. However, recently, various studies have been started in advanced nuclear countries such as the United States to reduce spent nuclear fuel, focusing on measures to reduce spent nuclear fuel. In this study, a simple preliminary assessment of the thermal part was performed for the consolidation storage method which separates fuel rods from spent nuclear fuel and stores them. The preliminary thermal evaluation was analyzed separately for storing the spent fuel in fuel assembly state and separating the fuel rods and storing them. The consolidation storage method in separating the fuel rods was advantageous in terms of thermal conductivity. However, detailed evaluation should be performed considering heat transfer by convection and vessel shape when storing multiple fuel bundles simultaneously.
        7.
        2022.10 구독 인증기관·개인회원 무료
        Due to the saturation of the on-site storage capacity of spent nuclear fuel within a few years, dry storage facility should be introduced. However, it is unclear when to start operating the dry storage facility, so in case of Kori Unit 1, which is being decommissioning, the spent fuel must be stored in the spent fuel pool of another power plant. In addition, in the case of damaged fuel, it is impossible to transfer and store it with general handling methods. Therefore, a damaged fuel canister (DFC) should be able to handle damaged or failed fuel as intact fuel, and both wet and dry storage should be possible. The canister developed by Korea Hydro & Nuclear Power is designed to satisfy criticality, shielding, cooling performance, and structural integrity in accordance with NUREG-1536 and 2215. In addition, it can be handled as existing fuel handling devices rather than new handling tools. Fastening of the DFC lid and body in the spent fuel pool is possible with a hexagonal socket wrench, one of the fuel repair tools. And it is designed to facilitate visual identification of whether it is fastenedor not. The lifting method for transferring DFC to another facility is the same as the nuclear fuel lifting method. And a unique sealing and mesh structure of the lid and body is devised to completely block leakage of nuclear fuel fragments of 0.2 mm or more during vacuum drying for dry storage. The usability of DFC has been verified through test operation of the prototype, and it will be manufactured before discharging spent fuel for the decommissioning of Kori Unit 1.
        8.
        2022.05 구독 인증기관·개인회원 무료
        The spent fuel dry storage canister is generally made of austenitic stainless-steel and has the role of an important barrier to encapsulate spent fuels and radioactive materials. The canister on the dry storage system has several welding lines in the wall and lid, which have high residual tensile stresses after welding procedure. Interaction between stainless steel and chloride environment from a sea results in an aged-related degradation phenomenon causing chloride induced stress corrosion cracking (CISCC) in the dry storage system. A pending issue to the interim storage of spent fuel awaiting repository disposal is their susceptibility to CISCC of stainless steel canisters. The available mitigation technology should be studied sufficiently to prevent the degradation phenomenon. This paper assesses stress-based mitigation to control residual tensile stress practically applicable to the atmospheric CISCC for the aging management of the stainless steel canisters. There are major components, that is, elevated tensile stress, susceptible material and corrosive environment that must be simultaneously present for CISCC degradation to occur. Surface stress improvement can effectively mitigate the potential for CISCC of the canister external surfaces. The potential deleterious effect of the additional work is negated by the presence of compressive residual stress, which removes the tensile stress needed for CISCC to occur. Surface stress improvement methods such as shock-based peening, shot peening and low plasticity burnishing can be applied for surface stress improvement of the canisters. Stress relaxation processes and advanced welding methods such as laser beam welding and friction stir welding can be also available to mitigate the susceptibility to CISCC. As the result assessing the stress-based mitigation technologies, promising candidate methods could be selected to reduce the residual tensile stresses and to control an aged-related degradation condition causing CISCC in the spent fuel dry storage canister.
        14.
        2017.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        국내에서 개발중인 콘크리트 저장용기는 방사성 물질의 격납 건전성을 유지하기 위하여 내부에 캐니스터를 포함하고 있다. 본 논문에서는 콘크리트 저장용기 내부 캐니스터의 뚜껑 용접시, 용접시간 저감과 이에 따른 캐니스터 용접부의 구조적 건 전성을 확보하기 위한 방안으로, 정상, 비정상 및 사고조건에서 캐니스터 용접부 균열을 진전시키는 하중에 의해 발생되는 균열 깊이를 분석하여, 용접부의 최대 허용결함깊이를 평가하였다. 정상, 비정상 및 사고조건에서의 구조해석은 범용 유한 요소해석 프로그램인 ABAQUS를 사용하였으며, 허용결함깊이는 ASME B&PV Code Section XI에 따라 막응력과 조합하중 에 대해 평가하였다. 평가결과 콘크리트 저장용기의 캐니스터 용접부의 허용결함깊이는 18.75 mm로 평가되었으며, 이는 NUREG-1536에서 권고하고 있는 임계결함깊이를 만족하고 있는 것으로 나타났다.
        4,000원