This study was designed to examine the immune response in Korean rockfish during water temperature fluctuation and to elucidate the factors contributing to streptococcal pathogenesis in cultured Korean rockfish, S. schlegeli. We investigated cumulative mortality against Streptococcus iniae (FP5228 strain) infection in the exposed Korean rockfish (39.7±5.8 g) to environmentally relevant temperature (Control, 23℃; High temperature, 28℃ and 23℃ and 28℃ with 12 hours interval exchange, 23↔28℃) for 48 hours. Also, the expression of the mRNA related to the immune response genes (heat shock protein 70, interleukin- 1β, lysozyme g-type and thioredoxin-like 1) were measured in spleen and head kidney by real-time PCR analysis in the exposed fish to thermal stress. In this study, the combined stress with bacterial challenge in fishes exposed to thermal stress lowered the survival rate than that of control (23℃). The cumulative mortality in the group of control, 28℃ and 23↔28℃ was 24%, 24% and 40% (P<0.05), respectively. Also, thermal stress modulated the mRNA level of immune related genes; heat shock protein 70, interleukin-1β, lysozyme g-type and thioredoxin-like 1 in Korean rockfish. The present study indicates that a high and sudden water temperature change affect immune responses and reduce the disease resistance in Korean rockfish.
The purpose of the study was to investigate an effect of water temperature on a non-specific immune response and mortality of tilapia, Oreochromis niloticus, following a bacterial infection. Seventy five tilapia acclimated to 25℃ were then transferred at 16 and 36℃, and examined for non-specific immune responses over 12-96 h. Respiratory burst activity was reduced significantly in the group of fish cultured at 16 and 36℃ over 24-96 h, whereas phagocytic activity decreased significantly in the group of fish reared at a low temperature (16℃) over 12 and 24 h and high temperatures (36℃) over 12-96 h. Lysozyme activity diminished significantly in the group of fish transferred to 16℃ over 12-48 h, but increased significantly in the group of fish at 36℃ over 48 and 96 h. Alternative complement pathway (ACH50) decreased significantly when transferred to 16℃ after 12 h, but increased significantly when transferred to 36℃ after 24 h. In a challenging test, 30 tilapia reared at 25℃ were injected intraperitoneally with Streptococcus iniae at a dose of 2x107 cfu/fish, and then reared onward at water temperatures of 15, 25 (control), and 36℃. Over 12-96 h, the cumulative mortality of S. iniae-injected fish held in 16 and 36℃ was significantly higher than that of injected-fish held in 25℃ In conclusion, transfer of tilapia from 25℃ to low temperature (16℃) after 12 h, and transfer of fish from 25℃ to high temperature (35℃) reduced their immune capability. Furthermore, tilapia under temperature stress at 16 and 36℃ from 25℃ decreased its resistance against S. iniae
Vibrio spp. and Streptococcus spp. have caused a considerable disease of farmed fish and economic loss in fish farming and seafood industry. In this study, the efficacy of an aquatic disinfectant tablet composed to calcium hypochlorite was evaluated against V. anguillarum and S. iniae. A bactericidal efficacy test by broth dilution method was used to determine the lowest effective dilution of the disinfectant following exposure to test bacteria for 30 min at 4oC. An aquatic disinfectant tablet and test bacteria were diluted with distilled water (DW), hard water (HW) or organic matter suspension (OM) according to treatment condition. V. anguillarum on the DW, HW and OM condition was completely inactivated with 16,000 15,000 and 13,000 fold dilutions of the disinfectant, respectively. On the DW, HW and OM condition, S. iniae was absolutely inactivated with 17,000 16,000 and 14,000 fold dilutions of the disinfectant, respectively. As an aquatic disinfectant tablet possesses bactericidal efficacy against fish pathogenic bacteria such as V. anguillarum and S. iniae this disinfectant solution can be used to control the spread of fish infective bacterial diseases.