검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2023.11 구독 인증기관·개인회원 무료
        Radioactive waste (hereinafter referred to as mixed waste) containing hazardous substances (heavy metals, organic and inorganic waste liquids, asbestos, etc.) has been continuously generated from domestic nuclear power plants, nuclear facilities, and other industrial facilities, and heavy metals were released during the dismantlement of Kori Unit 1 and Wolseong Unit 1. Lead, cadmium, mercury, arsenic), asbestos, decontamination waste liquid (organic/inorganic waste liquid), etc. may be generated. Although hazardous waste related to the nuclear industry continues to be generated, only the regulation direction for hazardous substances is presented in the provisions related to hazardous substances in the delivery regulations for low and intermediate-level radioactive waste and the acceptance criteria for low and intermediate-level radioactive waste disposal facilities. In particular, because there is no clear definition of “hazardousness” and specific standards such as concentration and characteristics for classification of hazardous substances, as well as hazard removal procedures when the hazardousness of radioactive waste is confirmed, no hazardous substances have been delivered in Korea to date and many mixed wastes are stored at each generation facility or at the NPP. As a plan to improve delivery standards related to mixed waste is being prepared recently, it is believed that if the acceptance standards are revised accordingly, it will be possible to confirm the suitability for disposal of drums produced after the establishment of the acceptance standards in 2015. However, it is believed that securing disposal suitability for waste that was packed in 200L drums and compressed under super high pressure in the absence of specific technical standards and regulatory guidelines for the disposal of radioactive waste containing hazardous substances would still remain a difficult problem. In this report overseas acceptance standards related to hazardous waste were reviewed and a plan to secure the disposal suitability of 200 L drums compressed with of super high pressure was proposed.
        2.
        2022.10 구독 인증기관·개인회원 무료
        Currently, Hanul NPP packages glass fiber classified as particulate waste in plastic packaging bags and stores them in 200 L drums. KORAD’s Waste Acceptance Criteria (WAC) presents that very low-level soil can be immobilized by loading it in a soft bag and then packaging it in a 200 L or 320 L steel drum. As currently accepted method of packaging with soft bag applies to only very low-level soils among the wastes with a risk of dispersion, it is necessary to develop a non-dispersible treatment suitable for the characteristics of other particulate waste in the future. Therefore, in order for Hanul packaging pack to be approved as an alternative method for immobilization of dispersible substances, it is necessary to verify the suitability of the packaging bag. In this paper, whether the glass fiber packaging bag used in Hanul NPP satisfies the characteristic of the soft bag presented in the WAC and the possibility of being considered as a non-dispersible measure for particulate are examined. The soft bag must meet the following requirements: material and structure, shape, drop test, and immersion test. The results of the review are as follows. First, since the glass fiber is already packaged in the drum, only the role of the inner layer, made of polyethylene, having a watertight function may be required. Second, when packaging a drum, the packaging bag is compressed into a shaped frame having an inner size of a 200 L drum, so it is packaged with little empty space in the drum. Third, as a result of a drop test of a packaging pack containing 20 kg of contents from a height of 1.2 m, it was confirmed that there was no leakage of contents. Fourth, the packaging bag was immersed in a 1-m depth water tank for 30-minutes, and the performance corresponding to the IPX7 was satisfied. As a result of reviewing the soft bag characteristic of Hanul glass fiber packaging bag, it is considered that the bag can be used as one of the non-dispersible measures because it meets almost the characteristics required by the WAC. In addition, the acceptance criteria of overseas disposal sites present various secure packaging methods in place of immobilization as a non-dispersible measure for waste containing particulate matter. It is necessary to reflect these overseas cases in the establishment of non-dispersible measures for domestic waste acceptance in the future.
        3.
        2022.05 구독 인증기관·개인회원 무료
        As the decommissioning of Kori Unit 1 progresses, securing technology for treatment and disposal of radioactive wastes that have not been disposed of so far, such as spent filters, is recognized as an urgent task. In this study, a method of confirming the disposal suitability of spent filters was presented by reviewing the waste characteristics as presented in the waste acceptance criteria (WAC). The waste characteristics to be satisfied to ensure disposal suitability of waste are largely classified into general requirements, solidification and immobilization requirements, radiological requirements, physical requirements, chemical requirements, and biological requirements. First, the general requirement is to prove that the prohibited waste form has not been introduced into items related to waste form and packaging, and to confirm the suitability of disposal through step-by-step packaging photos, generation information, X-ray inspection, and visual inspection. Second, in the solidification and immobilization requirements, spent filters are non-homogeneous waste, and if the total radioactivity concentration of nuclides with a half-life of more than 20 years is 74,000 Bq·g−1 or more, they must be immobilized. Third, in order to meet the characteristic criteria for nuclides and radioactivity concentration, sampling and scaling factors development are required and based on this, nuclides must be identified and demonstrated to be below the disposal concentration limits. Surface dose rate and surface contamination should be measured in accordance with standardized procedures and disposal suitability should be confirmed through document tests recording the measured values. Fourth, in order to satisfy the physical requirements of the particulate matter and filling rate characteristics, the spent filter must be immobilized, if necessary, thereby ensuring disposal suitability. Meanwhile, free water in the spent filter should be removed through pre-drying and dehydration, and the disposal suitability should be confirmed by applying a test. Fifth, the criteria for chelating agents should be checked for disposal suitability through operation records and component analysis of spent filters, and documents, that can prove harmful substances are removed in advance and no harmful substances are included in the package, should be provided. Lastly, in biological requirements, if the spent filters contain corrosive or infectious substances, they should be removed in advance and disposal suitability should be confirmed by providing documents that can prove that such substances are not included in the package.
        4.
        2022.05 구독 인증기관·개인회원 무료
        This study established a process to ensure the disposal suitability of spent filters stored in the untreated state in Kori unit 1 and presented the following procedures and requirements for confirming the disposal suitability for each process. The process for securing spent filter disposal suitability consists of collecting spent filters, compression, immobilization, analysis and packaging, and storage stages. The requirements for confirming the acceptance criteria for each process are as follows. (1) Collecting: Since the high radioactivity spent filters are being stored in the filter room of Kori unit 1, those are collected by a remote system to minimize the exposure dose of workers due to spent filter handling. In order to satisfy the surface dose rate requirements, spent filters with a surface dose rate of 10 mSv·hr−1 or more are classified and collected, and stored temporary storage place until a separate treatment plan is determined. The checkpoints in this process are the surface dose rate, etc. (2) Compression: The collected spent filters are analyzed gamma nuclides such as Co-60 and Cs-137, using a field-applicable nuclide analyzer, and then applying the scaling factors to determine whether it is disposable. Spent filters whose radioactivity concentration is confirmed to be less than the disposal concentration limit is compressed into compression ratios determined by surface dose rate. The checkpoints in this process are nuclide information, surface dose rate, compression ratio, spent filter loading quantity, etc. (3) Immobilization: A spent filter is a non-homogeneous waste that is immobilized with a proven safety material such as cement if the total radioactivity concentration of nuclides with a half-life of more than 20 years is 74,000 Bq·g−1. Meanwhile, immobilization of inhomogeneous waste can be considered to satisfy disposal criteria such as particulate matter and filling rate. The checkpoints in this process are the immobilizing material, filling rate, etc. (4) Analysis and Packaging: Immobilized drums shall be determined to be 95% or more of the total radioactivity of waste packages by measuring the radioactivity concentration of nuclides using a nuclide analysis device. Finally, measure the surface dose rate and surface contamination of the package, and attach the package label recording the identification number, date, total radioactivity, surface dose rate, and surface contamination information to the packaging container. (5) Storage: Packaging containers are moved to and stored in a temporary waste storage or storage area before disposal.