본 연구는 공기열원 히트펌프 온실에서 환기에 의해 배출되는 에너지 즉 잉여 태양에너지 및 태양열 집열기를 이용하여 축열량 및 이들 에너지를 이용한 온실의 난방효과를 실험적으로 검토하였다. 태양열 집열기의 경우, 실험기간동안 누계 수평면 일사량의 최대, 평균 및 최솟값은 각각 52.2, 22.9 및 3.2 MJ․m-2이었고, 총 일사량은 869.8 MJ․m-2 정도였다. 그리고 집열량의 최대, 평균 및 최솟값은 각각 38,118.2, 22,545.9 및 2,622.1 kcal 정도였고, 총 집열량은 856,742.6 kcal 정도인 것으로 나타났다. 잉여 태양에너지의 경우, 여러 가지 요인에 의해서 온실로부터 회수되는 열량은 다르지만, 온실로부터 회수된 총 잉여 태양에너지는 375,946.7 kcal 정도인 것으로 나타났다. 히트펌프의 경우, 설정온도를 고려하지 않고 축열된 총 축열량은 17,519,085.3 kcal이고, 이 때 소비된 소비전력량은 7,169.6 kWh정도이었고, 시스템의 성능계수는 2.84정도이었다. 그리고 온실로 공급된 난방에너지는 최저 외기온과 유사한 경향을 보이는 것으로 나타났으며, 실험기간동안 총 난방에너지는 9,554,541.9 kcal로서 시간당으로 환산하면 평균 6,653.1 kcal․h-1정도인 것으로 나타났다. 특히 실제 히트펌프에 의해 축열된 량의 54.5%정도만 이용하는 것으로 나타나 난방시스템의 개선이 필요할 것으로 판단되었다. 실험기간동안 태양열 집열기, 잉여 태양에너지 및 히트펌프에 의한 축열량을 난방에너지로 100.0% 이용할 경우, 탄소배출량은 각각 259.7, 116.9 및 5,403.5 kgCO2정도 절감시킬 수 있을 것으로 나타났다.
본 연구에서는 온실 내부의 태양 잉여열과 외부의 공기열을 선택적으로 열원으로 이용함으로써 히트펌프의 성능을 향상시키고, 온실의 환기 지연을 통해 이산화탄소 시용비용을 절감할 수 있는 온실 공조시스템을 개발 하고자 하였다. 본 시스템의 축열 과정은 태양 잉여열을 이용하는 내부순환모드와 외기열을 이용하는 외부순환모드가 온실 내부온도에 따라 자동으로 절환되도록 구성하였으며, 히트펌프가동, 축열모드 절환, 난방 가동을 위한 6개의 온도값을 입력함으로써 축열과 난방이 자동으로 수행되도록 설계하였다. 단동온실을 대상으로 무환기 조건에서 기초시험을 수행한 결과, 태양 잉여열을 이용한 축열은 약 11시부터 시작되어 평균 3시간 30분 정도 유지되었으며, 주간의 온실 내부온도는 환기를 수행하지 않음에도 대부분 약 20~28oC 범위를 유지하였다. 주간 내부순환모드에서 시스템의 난방성능계수는 약 3.35로 야간 외부순환모드의 2.46 및 주간 외부순환모드의 2.67 에 비해 각각 36% 및 25% 향상됨을 확인하였다. 본 시스템의 개선사항으로 태양 잉여열의 효율적 이용을 위해 축열조 관리온도를 상승시킬 수 있는 고효율 히트펌프의 적용이 필요하며, 온실의 무환기 운용에 따른 과습환경의 조성을 방지하고 태양 잉여열 수준이 높은 시기에 온실의 온도상승을 방지하기 위해 강제환기를 운전모드에 추가할 필요가 있는 것으로 판단되었다.
This study is nutrient heating effect to apply the surplus heat recovery in greenhouse using fan coil unit. Especially, this study was carried out to utilize a surplus heat in greenhouse. This fan coil unit system was composed of a water tank, a fan coil unit, a circulating pump and a water-water heat exchanger. As the result, Temperature difference duing to fan coil unit in greenhouse showed that air temperature at experimental greenhouse on fan , comparison greenhouse were 28.3℃, 33.9℃, respectively. heat ratio showed that exchanged energy quantity in fan coil unit was 19,900∼28,880kcal/h, respectively. It was found that difference of nutrient temperature due to surplus heat recovery, water tank temperature were 19.2∼21.5℃ and 16.2∼18.3℃, The temperature variation of nutrient temperature was about 3℃ and higher . Economic analysis of fan coil unit system was increased gross income cost by 804,787 won.
Eco-efficiency considers both environmental impacts and economic values. It is a useful tool for communicating with stakeholders for business decision making. This study evaluated the eco-efficiency factor (EEF) for the energy network of a dyeing company that supplies surplus heat to a neighboring apartment during the night. This symbiosis network is one of the eco-industrial park (EIP) projects in Korea and aims to benefit local residents and the industrial complex by utilizing surplus heat. In this study, two categories were annualized. The first quantified environmental burden based on CO2 emissions and quantified product value in terms of steam sales. The second used a variety of environmental factors, such as fossil fuel, water and waste, to quantify environmental burden and used steam sales to quantify value. The EEF of the symbiosis network was 1.6, using the global warming impact, and determined using the multiple variable, was 1.33. This study shows that the EEF depends on variable details of environmental burden but the values of this project were very high contrast to other business or EIP project.