검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        2.
        2023.11 구독 인증기관·개인회원 무료
        According to the second high-level radioactive waste management national basic plan announced in December 2021, the reference geological disposal concept for spent nuclear fuels (SNF) in Korea followed the Finnish concept based on KBS-3 type. Also, the basic plan required consideration of the development of the technical alternatives. Accordingly, Korea Atomic Energy Research Institute is conducting analyses of various alternative disposal concepts for spent nuclear fuels and is in the final selection stage of an alternative disposal concept. 10 disposal concepts including reference concept were considered for analysis in terms of disposal efficiency and safety. They were reference concept, mined deep borehole matrix, sub-seabed disposal, deep borehole disposal, multi-level disposal, space disposal, sub-sea bed disposal, long-term storage, deep horizontal borehole disposal, and ice-sheet disposal. Among them, first 4 concepts, mined deep borehole matrix, sub-seabed disposal, deep borehole disposal, multi-level disposal, were selected as candidate alternative disposal concepts by the evaluation of qualitative items. And then, by the evaluation of quantitative and qualitative items with specialists, multi-level disposal concept was being selected as a final alternative disposal concept. Design basis and performance requirements for designing alternative disposal systems were laid in the previous stage. Based on this, the design strategy and main design requirements were derived, and the engineered barrier system of a high-efficiency disposal concept was preliminary designed accordingly. In addition, as an alternative disposal concept, performance targets and related requirements were established to ensure that the high-efficiency repository system and its engineered barrier system components, such as disposal containers, buffer bentonites, and backfill perform the safety functions. Items that qualitatively describe safety functions, performance goals, and related requirements at this stage and items whose quantitative values are changed according to future test results will be determined and updated in the process of finalizing and specifically designing an alternative highefficiency disposal system.
        4.
        2020.04 KCI 등재 서비스 종료(열람 제한)
        With the expansion of the shipping and port logistics industry in the 21st century, the traffic density is continuously increased because of the increase in volumes of world sea freight and fleets, as well as the increase in the causes of potential marine accidents, such as ship collisions and stranding. Accordingly, the International Maritime Organization (IMO) has requested that the installation and operation of VTS should be applied in areas with high risk of marine traffic, and the request should be included as one of the Safety of Life at Sea (SOLAS) regulations. In this paper, the fundamental requirements of the radar system for vessel traffic services were analyzed and the analyzing factors were based on the IALA guideline.s This paper also includes results for the requirement and recommendation analysis on detection distance, target separation, and the target position accuracy of X-band radar. Also, to check if it satisfies the requirement of detection distance, range and azimuth separation of small point targets, and target position accuracy from the IALA guidelines, the test was conducted through the radar image acquired at the VTS center, and hence, the validity of the technical performance requirements was confirmed.