검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 56

        1.
        2023.11 구독 인증기관·개인회원 무료
        In the nuclear fuel cycle (NFC) facilities, the failure of Heating Ventilation and Air Conditioning (HVAC) system starts with minor component failures and can escalate to affecting the entire system, ultimately resulting in radiological consequences to workers. In the field of air-conditioning and refrigerating engineering, the fault detection and diagnosis (FDD) of HVAC systems have been studied since faults occurring in improper routine operations and poor preventive maintenance of HVAC systems result in excessive energy consumption. This paper aims to provide a systematic review of existing FDD methods for HVAC systems therefore explore its potential application in nuclear field. For this goal, typical faults and FDD methods are investigated. The commonly occurring faults of HVAC are identified through various literature including publications from International Energy Agency (IEA) and American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). However, most literature does not explicitly addresses anomalies related to pressure, even though in nuclear facilities, abnormal pressure condition need to be carefully managed, particularly for maintaining radiological contamination differently within each zone. To build simulation model for FDD, the whole-building energy system modeling is needed because HVAC systems are major contributors to the whole building’s energy and thermal comfort, keeping the desired environment for occupants and other purposes. The whole-building energy modeling can be grouped into three categories: physics-based modeling (i.e., white-box models), hybrid modeling (i.e., grey-box models), and data-driven modeling (i.e., black-box models). To create a white-box FDD model, specialized tools such as EnergyPlus for modeling can be used. The EnergyPlus is open source program developed by US-DOE, and features heat balance calculation, enabling the dynamic simulation in transient state by heat balance calculation. The physics based modeling has the advantage of explaining clear cause-and-effect relationships between inputs and outputs based on heat and mass transfer equations, while creating accurate models requires time and effort. Creating a black-box FDD model requires a sufficient quantity and diverse types of operational data for machine learning. Since operation data for HVAC systems in existing nuclear cycle facilities are not fully available, so efforts to establish a monitoring system enabling the collection, storage, and management of sensor data indicating the status of HVAC systems and buildings should be prioritized. Once operational data are available, well-known machine learning methods such as linear regression, support vector machines, random forests, artificial neural networks, and recurrent neural networks (RNNs) can be used to classify and diagnose failures. The challenge with black-box models is the lack of access to failure data from operating facilities. To address this, one can consider developing black-box models using reference failure data provided by IEA or ASHRAE. Given the unavailability of operation data from the operating NFC facilities, there is a need for a short to medium-term plan for the development of a physics-based FDD model. Additionally, the development of a monitoring system to gather useful operation data is essential, which could serve both as a means to validate the physics-based model and as a potential foundation for building data-driven model in the long term.
        3.
        2023.10 구독 인증기관·개인회원 무료
        표면발현(surface-display system)은 세포 또는 바이러스 표면에 목적 단백질을 고정하여 발현시킴으로써 목적 단백질에 대하여 독립적인 공간 구조 및 생물학적 활성을 부여하는 단백질 공학 기술이다. 또한 이를 이용하여 높은 중화항체 유도 및 대량생산이 가능한 삼량체의 형태로 항원 단백질의 발현 또한 가능하다. BES(baculovirus expression system)에서의 표면발현 기술은 번역 후 수정과정 및 복잡한 구조의 다양한 단백질의 발현이 가능하기 에 다른 숙주 기반 시스템보다 효율적이라고 보고되고 있다. 그러나 목적 단백질 외의 다른 표면 단백질과 발현 공간에서의 경쟁으로 목적 단백질의 낮은 생산량이 큰 문제점으로 지적되고 있다. 따라서, 이러한 BES에서 표면 발현의 생산 효율을 증대시키기 위하여, 동일한 표면 공간에 대한 단백질 간의 발현 경쟁에 대해 실험적으로 확인 후, 그를 해결하기 위하여 표면발현에 최적인 목적 단백질 발현을 위한 프로모터 선발 실험을 수행하였다. 이를 통해 BES에서 표면발현에 의한 목적 단백질의 생산 효율을 증대시킬 수 있음을 확인하였다.
        4.
        2023.05 구독 인증기관·개인회원 무료
        The domestic representative nuclear fuel cycle facilities are post-irradiation examination facility (PIEF) and Irradiated Examination Facility (IMEF) at KAERI. They have regularly operated since 1991 and 1993, respectively. Due to the long period of use, the facilities are ageing, and maintenance costs are increasing every year. The maintenance methods have mainly been breakdown maintenance (BM) and partially preventive maintenance (PM). They involve replacing components that have problems through periodic inspections by on-site inspectors. However, these methods are not only uncertain in terms of replacement cycles due to worker’s deviation on the inspection results, but also make it difficult to respond accidents developed through failures on the critical equipment that confines radioactive material. Therefore, an advanced operation and maintenance studied in 2022 through all of nuclear facilities operated at KAERI. Advancement strategy in four categories (safety, sustainability, performance, innovativeness) was analyzed and their priorities according to a facility environment were determined so a roadmap for advanced operation and maintenance could be developed. The safety and sustainability are higher importance than the performance and innovativeness because facilities at KAERI has an emphasis on research and development rather than industrial production. Thus, strategy for advancement has focused even more on strengthening the safety and sustainability. To enhance safety, it has been identified that immediate improvement of aged structures, systems, and components (SSCs) through large-scale replacement is necessary, while consideration of implementing an ageing management program (AMP) in the medium to long term is also required. Facility sustainability requires strengthening operation expertise through training, education, and cultivation of specialized personnel for each system, and addressing outstanding regulatory issues such as approval of radiation environment report on the nuclear fuel processing facilities and improvement work according to fire hazard analysis. One of the safety enhancement methods, AMP, is a new maintenance approach that has not been previously applied, so it had to be thoroughly examined. In this study, an analysis was conducted on the procedure and method for introducing an AMP. An AMP for nuclear fuel cycle facilities was developed by analyzing the AMP applied to the BR2 research reactor in Belgium and modifying it for application to nuclear fuel cycle facilities. The ageing management for BR2 has the objective to maintain safety, availability and cost efficiency and three-step process. The first step is the classification of SSCs into four classes to apply graded approach. Secondly, ageing risk is assessed to identify critical failure modes, their frequency and precursors. Final step involves defining measures to reduce the ageing risk to an acceptable level in order to integrate the physical and economic aspects of ageing into a strategy for inspection, repair, and replacement. Similar approach was applied to the nuclear fuel cycle facility. Firstly, the SSCs of nuclear fuel cycle facilities have been classified according to their safety and quality classifications, as well as whether they are part of the confinement boundary. The SSCs involved in the confinement boundary were given more weight in the classification process, even if they are not classified as safety-class. A risk index for ageing was introduced to determine which prevention and mitigation measure should be chosen. By multiplying the health index and the impact index, the ageing risk matrix provides a numerical score that represents guidance on the prevention and mitigation of ageing effect. The health index is determined by combining the likelihood of failure and engineering evaluation of the current condition of SSCs, whereas the impact index is calculated by taking into account the severity of consequences and the duration of downtime resulting from a failure. This ageing management has to be thoroughly reviewed and modified to suit each facility before being applied to nuclear fuel cycle facilities.
        18.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the current study, a total of 102 common Todarodes pacificus squid caught in the East Sea were investigated for parasitological research. The results revealed that 33 (32.35%) out of 102 squid were infected by Nybelinia surmenicola, the mean intensity was 5.58 parasites per squid, and the maximum abundance was 11. Morphological analysis using a field emission scanning electron microscope showed the characteristic features of N. surmenicola. Molecular identification based on the 28S rRNA gene confirmed the isolated parasite as N. surmenicola, while phylogenetic analysis revealed that N. surmenicola isolated in this study was clustered with N. surmenicola isolated from Japan. This is the first report of phylogenetic characterization of N. surmenicola isolated from Korea.
        4,000원
        20.
        2018.10 구독 인증기관·개인회원 무료
        The red imported fire ant (Solenopsis invicta) is a species of ant native to South America. The fire ant was inadvertently introduced into USA, Australia, New Zealand, and other Asian countries including China and Taiwan. Since the first report of the fire ant in port city of Busan, Korea in 2017, it was found in many other cities of Korea in following year. To obtain the molecular information of this invasive species, total RNA was extracted from the abdominal segment of the ants collected in Incheon, and subjected to transcriptome sequencing. By using Illumina sequencer platform, 101 base pared-end sequencing generated 2 × 50,064,081 of raw reads to obtain 2 × 45.95 Gbase of quality filtered nucleotide sequences. The in silico cDNA library was constructed by Trinity de novo assembler followed by TransDecoder ORF finder and CD-HIT clustering program to streamline the library. The final version of cDNA library contains 20,442 contigs with protein coding capability. To survey the virome of this ant, these contigs were searched against the viral reference sequences from NCBI RefSeq database with BLASTN program. As a result, contigs which showed high sequence identities with several RNA viruses including previously reported SINV-2 were found from the fire ant. This virome information might give an idea of a shift of virological environment of this newly found ant isolate or population in Korea.
        1 2 3