Many countries have used nuclear power to generate electricity. Uranium-235, which is used as fuel in nuclear power plants, produces many fission products. Among them, iodine-129 is problematic due to its long half-life (1.57×107 years) and high diffusivity in the environment. If it is released into the environment without any treatment, it could have a major impact on humans and ecosystems. Therefore, it must be treated into a stable form through capture and solidification. Iodine can be captured in the form of AgI through silver-loaded zeolite filters in off-gas treatment processes. However, AgI could be decomposed in the reducing atmosphere of groundwater, so it must be converted into a stable form. In this study, Al2O3, Bi2O3, PbO, V2O5, MoO3, or WO3 were added to the iodine solidification matrix, AgI-Ag2O-TeO2 glass. The glass precursors were mixed to the appropriate composition and placed in an alumina crucible. After heat treatment at 800°C for 1 hour, the melt was quenched in a carbon crucible. The leaching behavior and thermal properties of the glass samples were evaluated. The PCT-A test for leaching evaluation showed that the normalized releases of all elements were below 2 g/m2, which satisfied the U.S. glass wasteform leaching regulations. Diffrential scanning calorimetry (DSC) was performed to evaluate the thermal properties of all glass samples. The addition of MoO3 or WO3 to the AgI-Ag2O-TeO2 glass increased the glass transition temperature (Tg) and crystallization temperature (Tc) while maintaining the glass stability. The similar relative electro-static filed values of MoO3, and WO3 which are approxibately three times that of the glass network former TeO2, could provide sufficient force to the TeO2 interacting with the non-bridging oxygen forming Te-O-M (M=V, Mo, W) links. The high electrostatic forces of Mo and W increased the glass network cohension and prevented the crystallization of the glass.
Uranium-235, used in nuclear power generation, produces a lot of radioactive waste. Among radioactive waste nuclides, I-129 is problematic due to its long half-life (1.57×107 y) with high mobility in the environment. It should be captured and immobilized into a geological disposal environment through a stable waste form. In this study, various additives including Al, Bi, Pb, V, Mo and W were added to silver tellurite glass to prepare a matrix for immobilizing iodine, and its thermal and leaching properties were evaluated. To prepare glass, the glass precursor mixture was placed in alumina crucibles and heated at 800°C for 1 h. Except for aluminum, there was no significant loss of constituent elements. The loading of iodine in the matrix was approximately 11-15% by weigh, excluding oxygen. The normalized releases of all the elements obtained by PCT-A were below the order of 10-1 g/m2, which satisfies US regulation (2 g/m2). Differential scanning calorimetry was performed to evaluate the thermal properties of the glass samples. The glass transition temperature (Tg) increased by adding such as V2O5, MoO3, or WO3. The similar relative electrostatic field values of V2O5, MoO3, and WO3 could provide sufficient electro static field to the TeO2 interacting with the non-bridging oxygen forming Te-O-M (M = V, Mo, W) links. The addition of MoO3 or WO3 in the silver tellurite glass system increased glass transition temperature (Tg) and crystallization temperature (Tc) while maintaining the glass stability.
Uranium-235, used for nuclear power generation, has brought radioactive waste. It could be released into the environment during reprocessing or recycling of the spent nuclear fuel. Among the radioactive waste nuclides, I-129 occurs problems due to its long half-life (1.57×107 y) with high mobility in the environment. Therefore, it should be captured and immobilized into a geological disposal system through a stable waste form. One of the methods to capture iodine in the off-gas treatment process is to use silver loaded zeolite filter. It converts radioactive iodine into AgI, one of the most stable iodine forms in the solid state. However, it is difficult to directly dispose of AgI itself in an underground repository because of its aqueous dissolution under reducing condition with Fe2+. It must be immobilized in the matrix materials to prevent release of iodine as a result of chemical reaction. Among the matrix glasses, silver tellurite glass has been proposed. In this study, additives including Al, Bi, Pb, V, Mo, and W were added into the silver tellurite glass. The thermal properties of each matrix for radioactive iodine immobilization were evaluated. The glasses were prepared by the melt-quenching method at 800°C for 1 h. Differential scanning calorimetry (DSC) was performed to evaluate the thermal properties of the glass samples. From the study, the glass transition temperature (Tg) was increased by adding additives such as V2O5, MoO3, or WO3 in the silver tellurite glass. The relative electro-static field (REF) values of V2O5, MoO3, and WO3 are about three times higher than that of the glass network former, TeO2. It could provide sufficient electro-static field (EF) to the TeO2 interacting with the non-bridging oxygen forming Te-O-M (M = V, Mo, W) links. Therefore, the addition of V2O5, MoO3, or WO3 reinforced the glass network cohesion to increase the Tg of the glass. The addition of MoO3or WO3 in the silver tellurite glass increased Tg and crystallization temperature (Tc) with remaining the glass stability.
Silver tellurite glasses with melting temperature of approximately 700°C were developed to immobilize 129I wastes. Longterm dissolution tests in 0.1 M acetic acid and disposability assessment were conducted to evaluate sustainability of the glasses. Leaching rate of Te, Bi and I from the glasses decreased for up to 16 d, then remained stable afterwards. On the contrary, tens to tens of thousands of times more of Ag was leached in comparison to the other elements; additionally, Ag leached continuously for all 128 d of the test owing to the exchange of Ag+ and H+ ions between the glasses and solution. The I leached much lower than those of other elements even though it leached ~10 times more in 0.1 M acetic acid than in deionized water. Some TeO4 units in the glass network were transformed to TeO3 by ion exchange and hydrolysis. These silver tellurite glasses met all waste acceptance criteria for disposal in Korea.
This paper presents results and observations obtained from a study of the optical and thermal properties of alkali tellurite depending on the composition. Fourier transform infrared (FT-IR) spectra showed evidence of chemical modification from TeO4 trigonal bipyramids (tbp) to TeO3 trigonal pyramids (tp) in tellurite glasses. The optical band gaps of the different glass samples calculated using Tauc's method were found to range from 3.5-3.8 eV. The glass transition temperature (Tg) and glass stability (δT) of alkali tellurite glasses were investigated, as M2O [M: Li, Na, K] amounted to 25 mol%, through the use of differential thermal analysis (DTA). The coefficient of thermal expansion (CTE) was measured in a thermo mechanical analysis (TMA) with a slow heating rate after the glass samples were annealed. The results confirm that the optical band gap of alkali tellurite glasses depends on the Te-O-Te structural relaxation related to the ratio of bridging/non bridging oxygen (BO/NBO). In contrast, the thermal properties are related to the ionic field strength of the Te-O-M and M-O-M bonds, and the Te-O-Te breakage depends on the ratio of BO/NBO.