This study involved the heterogenization of a binder pitch (BP) using a small amount of nanocarbon to improve physical properties of the resulting graphite electrode (GE). Heterogenization was carried out by adding 0.5–2.0 wt.% platelet carbon nanofiber (PCNF) or carbon black (CB) to a commercial BP. To evaluate the physical properties of the BPs, we designed a new model graphite electrode (MGE) using needle coke as a filler. The heterogenized binder pitch (HBP) with PCNF or CB clearly increased the coking value by 5–13 wt.% compared to that of the as-received BP. Especially, the model graphite electrodes prepared with HBPs containing 1.0 wt.% PCNF or CB showed significantly improved physical properties compared to the control MGE from the as-received BP. Although the model graphite electrodes prepared with HBPs showed similar properties, they had smaller pore sizes than the control. This indicates that heterogenization of the BP can effectively decrease the pore size in the MGE matrix. Correlating the average pore sizes with the physical properties of the model graphite electrodes showed that, for the same porosity, matrices formed by the HBP with a smaller average pore size can effectively improve the apparent density, tensile strength, and oxidation resistance of the model graphite electrodes.
AI-2.5wt%Li 합금을 시효처리하여 시효거동과 인장성질에 미치는 δ' 상의 영향을 조사하였다. δ' 상의 입자 반경은 시효 시간의 1/3승에 비례하여 조대화하였다. δ' 상과 기지상과의 계면에너지는 0.0073 J/m2, 확산계수는 1.42cm2/sec, 초대화 거동은 MLSW이론에 부합됨을 알 수 있었다. 미세하고 균일하게 분포한 δ'상은 전반적으로 인장강도의 상승을 가져왔으며, 평형상인 δ상의 석출과 이로 인한 무석출물대의 존재로 과시효시 강도가 감소하였다. 인장변형시 전위는 초전위로 아시효와 피크시효시에는 δ'상을 전단하지만 과시효시에는 δ'상을 전단하지 못하고 우회하여 전위루우프를 형성한다.
This study investigated the tensile property of high performance concrete according to addition of plastic bead. Test results showed that the addition of PS beads induced the decrease of crack width and increase of number of cracks while maintaining tensile strength and tensile strain capacity.
Accelerated alkali resistance test were conducted for pre-heated GFRP Rebar. The GFRP rebar specimens were heated to temperatures of 60℃, 120℃, 200℃ and 300℃ and then immerged in alkali solution for 30days. According to ACI 440.3R-12, tensile properties were measured.