검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2023.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To develop a high capacity lithium secondary battery, a new approach to anode material synthesis is required, capable of producing an anode that exceeds the energy density limit of a carbon-based anode. This research synthesized carbon nano silicon composites as an anode material for a secondary battery using the RF thermal plasma method, which is an ecofriendly dry synthesis method. Prior to material synthesis, a silicon raw material was mixed at 10, 20, 30, 40, and 50 wt% based on the carbon raw material in a powder form, and the temperature change inside the reaction field depending on the applied plasma power was calculated. Information about the materials in the synthesized carbon nano silicon composites were confirmed through XRD analysis, showing carbon (86.7~52.6 %), silicon (7.2~36.2 %), and silicon carbide (6.1~11.2 %). Through FE-SEM analysis, it was confirmed that the silicon bonded to carbon was distributed at sizes of 100 nm or less. The bonding shape of the silicon nano particles bonded to carbon was observed through TEM analysis. The initial electrochemical charging/ discharging test for the 40 wt% silicon mixture showed excellent electrical characteristics of 1,517 mAh/g (91.9 %) and an irreversible capacity of 133 mAh/g (8.1 %).
        4,000원
        2.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ceramic powder, such as MgO, is added as a binder to prepare the green compacts of molten salts of an electrolyte for a thermal battery. Despite the addition of a binder, when the thickness of the electrolyte decreases to improve the battery performance, the problem with the unintentional short circuit between the anode and cathode still remains. To improve the current powder molding method, a new type of electrolyte separator with porous MgO preforms is prepared and characteristics of the thermal battery are evaluated. A Spherical PMMA polymer powder is added as a pore-forming agent in the MgO powder, and an organic binder is used to prepare slurry appropriate for tape casting. A porous MgO preform with 300 μm thickness is prepared through a binder burnout and sintering process. The particle size of the starting MgO powder has an effect, not on the porosity of the porous MgO preform, but on the battery characteristics. The porosity of the porous MgO preforms is controlled from 60 to 75% using a pore-forming agent. The batteries prepared using various porosities of preforms show a performance equal to or higher than that of the pellet-shaped battery prepared by the conventional powder molding method.
        4,000원
        3.
        2014.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effects of particle size of Li-Si alloy and LiCl-KCl addition as a binder phase for raw material of anode were investigated on the formability of the thermal battery anode. The formability was evaluated with respect to filling density, tap density, compaction density, spring-back and compressive strength. With increasing particle size of Li-Si alloy powder, densities increased while spring-back and compressive strength decreased. Since the small spring-back is beneficial to avoiding breakage of pressed compacts, larger particles might be more suitable for anode forming. The increasing amount of LiCl-KCl binder phase contributed to reducing spring-back, improving the formability of anode powder too. The control of particle size also seems to be helpful to get double pressed pellets, which consisted of two layer of anode and electrolyte.
        4,000원
        4.
        2014.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        FeS2 has been widely used for cathode materials in thermal battery because of its high stability and currentcapability at high operation temperature. Salts such as a LiCl-KCl were added as a binder for improving electrical per-formance and formability of FeS2 cathode powder. In this study, the effects of the addition of Li2O in LiCl-KCl binderon the formability of FeS2 powder compact were investigated. With the increasing amount of Li2O addition to LiCl-KClbinder salts, the strength of the pressed compacts increased considerably when the powder mixture were pre-heat-treatedabove 350oC. The heat-treatment resulted in promoting the coating coverage of FeS2 particles by the salts as Li2O wasadded. The observed coating as Li2O addition might be attributed to the enhanced wettability of the salt rather than itsreduced melting temperature. The high strength of compacts by the Li2O addition and pre-heat-treatment could improvethe formability of FeS2 raw materials.
        4,000원