PURPOSES:The objective of this study is to ascertain the curing period of cementless cold central plant recycled asphalt base-layer, using mechanical analyses and specimen quality tests on the field.METHODS :Cold central plant recycled asphalt base-layer mixture was produced in the plant from reclaimed asphalt, natural aggregate, filler for the cold mix, and the modified emulsion AP using asphalt mix design and plant mix design. In order to examine the applicability of the curing period during the field test, the international standards for the possibility of core extraction and the degree of compaction and LFWD deflection were analyzed. Moreover, Marshall stability test, porosity test, and indirect tensile strength test were performed on the specimens of asphalt mix and plant mix design.RESULTS :The plant production process and compaction method of cementless cold central plant recycled asphalt base-layer were established, and the applicability of the optical moisture content for producing the mixture was verified through the field test. In addition, it was determined that the core extraction method of the conventional international curing standard was insufficient to ensure performance, and the LFWD test demonstrated that the deflection converges after a two-day curing. However, the back-calculation analysis reveals that a three-day curing is satisfactory, resulting in a general level of performance of dense asphalt base-layer. Moreover, from the result of the specimen quality test of the asphalt mix design and plant mix design according to the curing period, it was determined that the qualities satisfied both domestic and international standards, after a two-day curing. However, it was determined that the strength and stiffness after three-day curing are higher than those after a two-day curing by approximately 3.5 % and 20 %, respectively.CONCLUSIONS:A three-day curing period is proposed for the cementless cold central plant recycled asphalt base-layer; this curing period can be demonstrated to retain the modulus of asphalt-base layer in the field and ensure stable quality characteristics.
The evaluation of mental workload is measured by subjective ratings, physiological signals. It takes long time to analysis the measured signals and is very tedious and time-consumming work. Therefore, to evaluate the affect of workload effectively, real-time measurement system is required. In this paper, real-time mental workload measurement system using cardiac autonomic indiced which reflect well the mental workload was developed and evaluated. Analyzed indices were HR, IBI, Lorentz plot, CSI, CVI, and LF/HF ratio of heart rate variability. The system was applied to evaluate the affect of arithmetic task and showed good results. This system was consisted of ECG amplifier, A/D converter, and personal computer, and algorithm was implemented using LabVIEW.