검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The concentration of TVOCs in public transportation in the spring and summer of 2018 was measured. Public transportation measured the concentration of TVOCs on six subway lines in Seoul, two lines of high-speed trains, and intercity buses. The measurements were taken during the operation of each route of the surveyed public transportation from the origin to the destination. In addition, the measurement time was divided into the congestion time and the non-congestion time. In the spring of 2018, in the order of subway, train A, train B, and intercity buses, TVOC concentrations during the congestion time zone were 205.9 μg/m3, 121.3 μg/m3, 171.1 μg/m3, and 88.7 μg/m3, respectively. During the non-congestion time zone, the concentrations were 177.2 μg/m3, 108.8 μg/ m3, 118.2 μg/m3, and 126.1 μg/m3, respectively. In the summer of 2018, TVOC concentrations in the order of the aforementioned transportation modes during the congestion time zone were 169.8 μg/m3, 175.8 μg/m3, 78.0 μg/ m3, and 185.3 μg/m3, respectively. During the non-congestion time zone, the concentrations were 210.8 μg/m3, 116.1 μg/m3, and 162.7 μg/m3, respectively. An analysis of BTEX concentration among VOCs in public transportation in descending order were followed by toluene > xylene > ethylbenzene > benzene. Toluene, which has the highest concentration among the BTEX compounds, was found to be 12.86 μg/m3 to 91.41 μg/m3 during spring congestion time and 7.10 μg/m3 to 39.52 μg/m3 during non-congestion time. During the summer congestion time, the concentration was 6.68 μg/m3 to 249.48 μg/m3 and 13.23 μg/m3 to 214.5 μg/m3 during the non-congestion time. The concentration of benzene was mostly less than 5 μg/m3 in transportation. Particularly in the case of toluene, the concentration is significantly higher than that of other VOCs. Accordingly, further study of toluene exposure hazards will be needed. Five percent of the surveyed TVOC concentrations exceeded the recommended indoor air quality standard of 500 μg/m3, and all 13 cases representing this percentage were found in the subway. In addition, nine of the 13 cases that exceeded the recommended standard were measured during congestion time. Therefore, VOCs in public transportation vehicles during congestion time need to be managed.
        4,000원
        2.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 스파티필름의 수분 스트레스 정도에 따라 실내 공간 내 오염물질 제거 효율을 구명하고자 수행하였다. 식물이 없는 공간을 대조구, 정상적인 스파티필름과 수분 스트레스를 받은 스파티필름을 각각의 처리구로 하였다. 스파티필름의 수분 스트레스 유무에 따른 chamber 내 온도를 조사한 결과 대조구와 처리구 모두 식물의 생육 적정 범위인 23±1℃를 유지하였으며, 처리 간의 0.7℃의 차이를 보였다. 습도의 경우 대조구와 처리구는 유의차 있게 나타났으며, 처리 간의 유의 차는 없는 것으로 나타났다. 수분 스트레스에 따른 실내 오염 물질을 조사한 결과, 포름알데히드(Formaldehyde) 경우 대조구는 0.30mg・m-3, 정상적인 스파티필름은 0.05mg・m-3 , 수분 스트레스를 받은 스파티필름은 0.09mg・m-3으로 대조구와 처리구는 통계적으로 유의차를 보였으며, 식물 내 수분 스트레스에 따른 처리구간에는 유의차가 없었다. TVOC(Total Volatile Organic Compound)조사 결과, 정상적인 스파티필름의 TVOC는 5시간 후 0.00mg・m-3 으로 모두 제거 된 반면, 수분 스트레스를 받은 스파티필름은 0.34mg・m-3으로 다소 남아 있었으며, 대조구는 1.25mg・m-3으로 세 처리 모두 통계적으로 유의차 있게 나타났다. 또한 이산화탄소 변화량 조사결과, 대조구는 459ppm, 정상 스파티필름은 446ppm으로 통계적으로 유의한 차이는 없으며, 수분 스트레스를 받은 스파티 필름이 대조구보다 이산화탄소 함량이 다소 높았다. 기공변화율 조사 결과, 정상 스파티필름의 변화율은 높게 나타났으며, 수분 스트레스를 받은 스파티필름은 변화율이 낮은 것으로 조사되었다. 따라서, 스파티필름이 배치되어있지 않은 공간보다 배치된 공간이 공기정화에 효과적이며, 수분 스트레스를 받은 스파티필름은 실내오염물질 제거에 있어서 기공 변화율 및 이산화탄소 흡수능력이 저하되므로 스파티필름을 이용하여 효과적으로 실내오염물질을 제거하기 위해서는 적절한 수분 관리가 필요한 것으로 판단된다.
        4,000원
        3.
        2019.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we measured the concentration of total volatile organic compounds (TVOCs) in four different seasons from 2016 to 2017 in order to determine seasonal variation of indoor air quality in relation to public transportation modes (subways, trains, and express buses). The measurement was carried out both during rush hour when traffic was congested as well as during non-rush hour when traffic was not congested. Effects by season, degree of congestion, and characteristics of public transportation were analyzed on the basis of 295 items of data during the periods of congestion and 295 items of data during the periods of non-congestion. The average TVOCs concentration in winter was the highest with 226.4 μg/m 3 . The average TVOCs concentration on an express bus was the highest with a seasonal average of 142.3 μg/m 3 . The TVOCs concentration in the period of congested traffic was higher than in the period of non-congested traffic for all public transportation modes. For the average TVOCs concentration by season and transportation, there was no data that exceeded the guidelines regarding maintaining indoor air quality. However, 2.5% of all sample measured data (TVOCs) exceeded the guidelines regarding maintaining indoor air quality. Therefore, the continuous monitoring of public transport vehicles is required.
        4,000원
        4.
        2009.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We proposed the new nano-carbon ball (NCB) materials for eliminating the total volatile organic compounds(TVOCs) from the felt which is built in the car. The concentrations of acetaldehyde and formaldehyde of the original felts were varied upon the different production lots. Acetaldehyde in the felt can be eliminated to target level(0.2μg) after introducing 0.5 wt% of NCB into the felt. Detector tube method for analyzing formaldehyde gas was more accurate than HPLC method. Formaldehyde can be eliminated to target level (64 ppb) after introducing 0.5 wt% of NCB into the felt. We also found that TVOC can be reduced to target level (0.32μg) after introducing 2.0 wt% of NCB. Upon introducing small amounts of NCB into the felt, it was possible that the level of formaldehyde, acetaldehyde and TVOC formed from the felts can be reduced to the target level. We also suggest the effective analyzing method of TVOCs.
        4,000원
        5.
        2016.08 KCI 등재 서비스 종료(열람 제한)
        In order to prepare the information needed to construct a reduction system for volatile organic compounds (VOCs) exhausted from ship-block paint-booths in a giant shipyard, VOCs in paint-shop airs were analyzed and compared to the components in paint thinners. Aromatic hydrocarbons containing eight and nine carbon atoms are known to be major VOC compounds found in shipyard paint-shops. The total hydrocarbon (THC(C7)) concentrations calibrated using toluene gas, were measured in block paint-shops with two photo-ionization detector (PID) meters, and the resulting THC(C7) data were converted to THC(C1) concentrations according to the Standard Methods for the Measurements of Air Pollution in South Korea. THC(C1) concentrations near the spray site ranged from 10 to 2,000 ppm, but they were less than 400 ppm near the walls of the paint-booth. The measurements of THC concentrations, based on the height of the monitoring sites, were related to the height of the target to which the spray paints were applied. The maximum concentrations occurred at almost the same height as the spray targets. When painted blocks had been dried-by warming with no spraying, the THC concentrations were 80~100 ppm.