Sixty dried agricultural products were collected from February to July 2024. Among these, 16 samples were randomly purchased from large supermarkets and local markets in Gwangju, and 44 were obtained from online marketplaces. Only products labeled with phrases such as “No Food Additives” or “100% Raw Ingredients” were selected for analysis. The aims of this study were to determine the concentrations of sulfur dioxide, preservatives, artificial colorants, and toxic heavy metals (lead and cadmium) in dried agricultural products, assess their risk indices, and provide foundational data to establish relevant regulatory standards. The results revealed that sulfite compounds were detected in some samples, with the highest sulfur dioxide concentrations found in gourds (82.99- 1046.95 mg/kg), apricots (10.87-529.45 mg/kg), and konjac powder (23.59-475.92 mg/kg). The highest sulfur dioxide risk index was observed in persimmons, with values ranging from 4.74% to 16.61% for male and 6.26% to 26.84% for female consumers. Sweet potatoes followed, with risk index values of 6.87% and 11.29% for male and female consumers, respectively. All the samples exhibited sulfur dioxide risk indexes below 100%, indicating safety. No preservatives or artificial colorants were detected in any of the samples, suggesting that sulfites can be used as alternatives to preservatives in certain products. The concentrations of lead in dates (9.55-137.09 μg/kg) and gourds (10.76-49.14 μg/kg) and cadmium in gourds (16.36-51.76 μg/kg) were within safe limits, with risk indexes below 100%. This study provides crucial baseline data for evaluating the safety of dried agricultural products. Furthermore, it underscores the need for more comprehensive risk assessments that consider the interactions between sulfur dioxide, heavy metals, and consumption patterns. Lastly, it highlights the necessity of strengthening regulatory standards to better protect consumers.
중금속을 처리하는 방법에는 일반적으로 화학적, 물리적 그리고 생물학적 처리방법 등이 있다. 이중 생물학적 처리방법은 미생물들의 자연 생체기작을 이용하는 방법으로, 생체축적 (biosorption & bioaccumulation), 산화환원반응 (oxidation & reduction), 메칠화 및 탈메칠화반응 (methylation & demethylation), 금속 유기물질 복합반응 (metal-organic complexation)과 비용해성 복합
Among various reactions which metal sulfides can undergo in the reducing environment, the lattice exchange reaction was examined in a attempt to selectively remove heavy metal ions contained in the Fe-Coagulants acid solution.
We have examined Zeta potential along with pHs to investigate surface characteristics of FeS(s). As a result of this experiment, zero point charge(ZPC) of FeS is pH 7 and zeta potential which resulted from solid solution reaction between Pb(Ⅱ) and FeS(s) is similar to that of PbS(s). Solubility characteristics of FeS(s) is appeared to that dissolved Fe(Ⅱ) concentration increased in less than pH 4, and also increased with increasing heavy metal concentration. Various heavy metal ions(Pb(Ⅱ), Cu(Ⅱ), Zn(Ⅱ)) contained in Fe-coagulants acid solution were removed selectively more than ninety-five percent in the rang of pH 2.5∼10 by FeS(s). From the above experiments, therefore, We could know that the products of reaction between heavy metal ions and FeS(s) are mental sulfide such as PbS(s), CuS(s) and ZnS(s).