In response to the global transition towards carbon neutrality, there's an increasing emphasis on sustainable energy solutions, with offshore wind power playing a crucial role, especially in South Korea. This study presents an AI-based safety management system specifically designed for offshore wind operators. At the heart of this system is a machine learning algorithm that processes sensor data to automatically recognize human behavior and improve the accuracy of predicting worker actions and conditions. Such predictive analytics not only refines the analysis of behavioral patterns, but also increases the effectiveness of accident prevention. The results of this research are expected to significantly improve safety measures in offshore wind facilities and further sustainable energy initiatives.
Korea currently has two permanent shutdown Nuclear Power Plants (NPPs), and the decommissioning project is expected to begin soon, starting with the first commercial NPP. The decommissioning project will eventually be the disposal of radioactive waste in the final stage of the work, and in that respect, proper tracking and history management should be well established in the management of waste. This is in line with the guidelines that regulatory agencies should also properly manage radioactive waste. Therefore, this study intends to examine the factors that should be considered in terms of tracking and management of radioactive waste in decommissioning nuclear facilities. The starting and final point of tracking radioactive waste generated during decommissioning is the physical inventory of the current as-is state and the final container. In this respect, the tracking of waste starts from the beginning of the dismantling operation. Thus, at the stage of approval of the decommissioning work, it may begin with an ID scheme, such as the functional location in operation for the target System, Structure, and Components (SSCs). As the dismantling work progresses, SSCs will be classified by nature and radiological level, which will be placed in containers in small packaging units. At this time, the small package should be given an ID. After that, the dismantling work leads to the treatment of waste, which involves a series of operations such as cutting, decomposition, melting, and decontamination. Each step in which these tasks are performed will be placed in a container, and ID assignment is also required. Until now, the small packaging container is for transfer after each treatment, and it is placed in the storage container in the final stage, at which time the storage container also gives a unique ID. Considerations for follow-up management were reviewed assuming solid waste, which is the majority of dismantled radioactive waste considered in this study. The ID system should be prepared from the start of the dismantling work, ID generation of the small transporting container and ID generation of the final disposal container during the intermediate waste treatment process, and each ID generation of the previous stage should be linked to each generation stage. In addition, each ID must be generated, and the definition of the grant scheme and attributes is required.
In these days, mobile technology such as smart phone and GPS have an effect on business processes of many companies especially a transportation company. The purpose of this paper is to present the development processes of real time vehicles tracking and intelligent TMS(Transportation Management System) using smart phone applications.
The objective of this study is two-fold. The first is to redesign business process of the transportation company. Using BPR(business process re-engineering), we analyze current processes to find opportunities for improvement redefining processes after adopting mobile technology precisely. The second is to develop the real time vehicles tracking and intelligent TMS. Proposed system consists of four parts: (1) intelligent TMS(web system) (2) real time vehicle tracking application for TMS (3) real time tracking application for customer (4) salesman supporting application. Developed system was tested at the transportation company and was found to be useful system.