Euiam and Paldang Reservoirs have often been facing water quality problems, such as eutrophication, algal blooms and off-flavors by treated wastewater effluent (TWE) in the North-Han and the Han River basins, but little is examined on the direct biological effect of TWE. This study tested algal growth potential (AGP) of four TWEs discharged into Euiam and Paldang Reservoirs to evaluate water fertility in September 2014 and March and September 2015. Test alga was used Anabaena circinalis isolated from Paldang Reservoir. Mean concentration of T-N and T-P in TWEs was 3,956.7 μg N L-1 and 50.8 μg P L-1, and the proportion of NO3-N and PO4-P to the total fraction was 72.1% and 40.8%, respectively. Both N and P were high in TWEs, but much higher N than P concentration indicates strong P-limitation. As a consequence, the maximum AGP was determined by PO4-P concentration (r=0.998, p<0.01). Mean AGP value was 15.4 mg dw L-1 among four effluents indicating its eutrophic condition. Due to the establishment of tertiary (advanced T-P) treatment method in the studied plants recently, P concentration was significantly decreased in TWEs compared to the years prior to 2012. However, P concentration seems to be still high enough to cause eutrophication and algal blooms. Therefore, wastewater treatment to P-free level needs to be considered if effluents are directly discharged into the drinking water resources.
This study was performed to improve the foaming generated in the effluent of wastewater treatment plant from March 2015 to July 2016. The main cause of foaming was air entrainment by an impinging jet and the internal accumulation by the diffusion barrier. Particularly, the foam growth was most active when there is low tide and larger discharge. To solve this problem, we experimented after installing fine mesh screen and the artificial channel device with underwater discharging outlet in the treated wastewater discharge channel and the outlet, respectively. As a result, the effects of foam reduction by devices ranged 85.0~92.0% and 70.7~85.6%, respectively. In addition, the foam and the noise were easily solved, first of all look to contribute to the prevention of complaints. Our device studies were applied to a single wastewater treatment plant. However, it is considered to be able to apply in other similar cases of domestic sewage treatment plants.
This study was conducted to suggest the cause analysis and mitigation measures of foaming generated in the effluent of wastewater treatment plant. The foam generated in the outlet connected with the tidal river system was identified as structural problems. And the main cause of foaming was air entrainment by an impinging jet and the internal accumulation by the diffusion barrier. In consideration of these conditions, it present the effective ways such as micro-screen and submerged outlet, to mitigate the foaming generated in the water channel and outlet end.
In response to the water shortage problem, continued attempts are being made to secure consistent and reliable water sources. Among various solutions to this problem, wastewater effluent is an easy way to secure the necessary supply, since its annual output is consistent. Furthermore, wastewater effluent has the advantage of being able to serve various purposes, such as cleaning, sprinkling, landscaping, river management, irrigation, and industrial applications. Therefore, this study presents the possible use of reclaimed industrial wastewater treated with Birm filters and a UF membrane, along with an analysis on membrane fouling. The preprocessing stage, part of the reclamation process, used Birm filters to minimize membrane fouling. Since this study did not consider heavy metal levels in the treated water, the analyses did not include the criterion for irrigation water quality. However, the wastewater reclaimed by using Birm filters and a UF membrane met every other requirement for reclaimed water quality standards. This indicated that the treated water could be used for cleaning, channel flow for maintenance, recreational purposes, and industrial applications. The analysis on the fouling of the Birm filter and UF membrane required the study of the composition and recovery rate of the membrane. According to SEM and EDX analyses of the UF membrane, carbon and oxygen ion composition amounted to approximately 57%, whereas inorganic matter was not detected. Furthermore, the difference in the recovery rates of the distressed membrane between acidic and alkaline cleaning was more than ~78%, which indicated that organic rather than inorganic matter contributed to membrane fouling.
본 연구는 부영양화되어 있는 하구감조역에서의 생성과 거동을 파악하는 것을 목적으로 도시역에서의 N2O발생에 착안하여 그 중에서도 인위적 임팩트가 크다고 판단되는 하수처리수 생활폐수 등이 유입되는 도시하천감조역을 대상으로 현지 정점조사를 실시하여 수역의 사계절에 걸친 각 질소성분의 농도변화와 flux를 상세히 파악하고 저질간극수 중의 연직분포를 측정하였다. 그 결과, 완혼합이고 염수쐐기설(楔)가 형성되는 Tatara천(川)에서 하수처리수는 해수의 혼합형태
Sludge minimization from wastewater treatment plant is becoming more important to save disposal costs and to contribute to sustainable development. For the reduction of sludge production, solubilization and dewaterability of sludge are important factors in sludge processing. Ultrasonic treatment has been used to enhance sludge solubility and dewaterability with anaerobic digestion sludge, primary sludge, and activated sludge. At the ultrasonic power of 0.2 kW/L for 1 hour, anaerobic sludge and activated sludge showed higher solubilization efficiency than the primary sludge in terms of COD, proteins, and suspended solids. Ultrasonic treatment decreased sludge dewaterability and sludge settling characteristics up to 720 kJ/L of ultrasonic energy. In conclusion, ultrasonic treatment was effective for sludge solubilization but it deteriorate dewaterability (specific resistance) and settling characteristics (SVI) of sludge at the experimental conditions.
This study estimated response of water quality and pollutant behavior according to the discharge and reuse of treated wastewater by three-dimensional eco-hydrodynamic model, and suggest plan that water quality management and environmental restoration in the coastal area including urban stream of Yeosu, Korea. Dispersions of low-saline water and COD by treated wastewater loads (design facility capacity, about 110,000 m3/d) were very limited in near of effluent site. Nutrients, however, increase compared to the other water quality factors, especially total nitrogen was very sensitive to input loads. When reuse some of treated wastewater to Yeondeung stream, nitrogen was big influence on estuarine water quality. Although current characteristics of treated wastewater such as discharge and water quality were negligible to the change of marine environment, effluent concentration of COD, TN and TP, especially 40% of TN, are reduced within the allowable pollutant loads for satisfy environmental capacity and recommended water quality criteria. Also, controls of input point/non-point sources to Yeondeung stream and base concentration of pollutants in coastal sea itself are very necessary.
This research aims at applicability of adsorption process in order to satisfy the restricted Effluent Quality Standards for dyeing wastewater. The dyeing wastewater treated by biological process with carrier imbedded microorganisms was directly applied to the activated carbon adsorption in Process A. The dyeing wastewater treated by Fenton oxidation for the effluent of biological process was applied to the adsorption in Process B. It was found that the optimum conditions of adsorption with granular activated carbon are 20oC and 120 minutes for the batch experiment. Langmuir equation was fitted better than Freundlich equation to the experimental data. The breakthrough time of adsorption column was determined by color rather than CODMn for both Process A and Process B. The results revealed that the breakthrough time of adsorption for two processes was extended by the treatment of Fenton oxidation for dyeing wastewater treated by biological treatment than the direct application of dyeing wastewater treated by the biological treatment. Adsorption process can be applied in order to meet the restricted Effluent Quality Standards for dyeing wastewater.
투수성 포장과 하수 처리수의 하천 방류는 도시하천의 수량증가 방법이다. 투수성 포장을 모의하도록 SWMM모형을 수정하였으며, 수정된 SWMM으로 학의천을 대상으로 도시유출 연속 모의를 수행하여 투수성 포장과 하수처리 재이용수의 효과를 분석하였다. 그 과정에서 증발량 처리에 대한 오류도 수정되었다. 하수처리 재이용수의 경우 저수량()은 1.63배, 갈수량()은 3.57배 증가하는 것으로 분석되었다. 만일 학의천 불투수 면적의 를 투수성 포장으로 치환할 경