This study is intended to provide navigator with specific information necessary to assist the avoidance of collision and the operation of ships to evaluate the maneuverability of dead weight tonnage 8,000 tons Oil/Chemical tanker. The actual maneuvering characteristics of ship can be adequately judged from the results of typical ship trials. Author carried out sea trials based full scale for turning test in ballast condition and full load condition, semi balanced rudder and flap rudder. The turning circle maneuvering were performed on the starboard and port sides with 35° rudder angle at the normal continuous rating. The results from tests could be compared directly with the standards of maneuverability of IMO and consequently the maneuvering qualities of the ship is full satisfied with its.
안전하며 친환경적인 근해운송시스템을 확보하기 위해서는 운송 수단인 선박의 안전한 운항 확보가 필수적이다. 특히 좌초, 충돌 등의 해난사고를 방지하기 위해서는 선박이 우수한 조종성능을 갖는 것이 요구되며 특히 조종성능 중에서 선회성능은 충돌 회피 등에 필수적인 성능이다. 본 연구에서는 선박에 부착된 조타기의 타력 증가가 선박의 선회성능에 미치는 영향을 모형선 실험을 통하여 고찰하였다. 먼저 Coanda 효과를 이용한 고 양력 타 장치 모형과 47 K PC의 모형선을 제작하였다. 또한 모형선의 선회 성능 실험을 위한 자유항주시스템을 구축하고 사각 수조에서의 타력 증가 값을 변화시켜가면서 모형선의 선회 성능을 계측하여 타력 증가에 따른 선회 성능의 변화를 평가하였다. 모형선의 선회성능 실험결과를 통해 타력 증가가 근해운송 선박의 선회 성능 향상에 효과적인 것을 확인하였다.
It is indispensable to grasp the turning ability of a ship to operate her effectively. For this purpose, the author measured the turning ability of training ship, A-RA by use of bow thruster and stem rudder. The turning ability of this ship, in case of using both of stem rudder and bow thruster at the same time, caused by increase of steering angle provides more influence to the size of tactical diameter than it caused by the power of bow thruster. But the influence of bow thruster on the turning ability is available only within rudder angle 5˚ - 10˚, so it is possible to grasp that the effect of bow truster is reduced as rudder angle become bigger. In case of the influence of bow thruster by her speed, the ability of bow thruster is very effective at low speed, but it is almost not available in normal turning speed. Therefore, the using both of stem rudder and bow thruster can be useful in case of low speed proceeding at entrance or departure of the narrow waterway or inside port which sea traffic is congest for collision avoidance.
Since very large and high-speed ships have been appeared in marine transportation from 1970s, these ships with poor maneuverability have made large-scale accidents frequently all over the world. The IMO(International Maritime Organization) recommended that ship designers should evaluate various maneuvering performance at initial stage and serve them to ship operators when they deliver a new ship. Meantime, it is expected that ships with large and wide superstructure would have poor maneuverability when they are affected by strong wind. Therefore, car carrier ship with large superstructure was selected to confirm how the ship responds to the external wind forces in this paper. The lateral and transverse projected areas above the water level were considered and ship behaviors were checked by change of rudder angles under severe wind conditions of different directions. In addition, hydrodynamic derivatives and coefficients were predicted from ship particulars and numerical calculations were carried out with the mathematical model of low speed maneuvering motions.