The stabilization techniques are highly required for damaged nuclear fuel to strengthen safety in terms of transportation, storage, and disposal. This technique includes recovering fuel materials from spent fuel, fabrication of stabilized pellets, and fabrication of fuel rods. Thus, it is important to identify the leaching behavior of the stabilized pellets to verify their stability in humid environments which are similar to storage conditions. In this study, we introduce various leaching experiment methods to evaluate the leaching behavior of the stabilized pellets, and determine the most suitable leaching test methods for the pellets. Also, we establish the leaching test conditions with various factors that can affect the dissolution and leaching behavior of the stabilized pellets. Accordingly, we prepare the simulated high- (55 GWd/tU) and low- (35 GWd/tU) burnup nuclear fuel (SIMFUEL) and pure UO2 pellets sintered at 1,550°C and 1,700°C, respectively. Each pellet is placed in a vessel and filled with DI water and perform the leaching test at three different temperature to verify the leaching mechanism at different temperature range. Based on the standard leaching test method (ASTM C1308-21), the test solution is removed from the pellet after specific time intervals and replaced in the fresh water, and the vessel is placed back into the controlled-temperature ovens. The test solutions are analyzed by using ICP-MS.
Irradiated uranium dioxide in damaged used fuel could oxidize during transportation, interim storage or disposal, resulting that the fuel pellet fragments are reduced to a grain-sized powder that can easily escaped from the damaged rod. It has been reported that oxidized spent fuel (i.e. U4O9+x) that was in contact with water could increase the dissolution rate by making the grain boundaries more accessible to the water. Therefore, the damaged used fuel requires stabilization technology including nuclear material recovery, pellet manufacturing process, and stabilization fuel rod manufacturing that can secure safety in terms of permanent disposal. In this study, we prepared pure UO2 and SIMFUEL pellets that are a mixture of UO2 and surrogated metallic oxides for fission products equivalent to a burn-up of 35 GWd/tU and 55 GWd/tU as the stabilized spent fuel. The UO2 and fission products powders were milled and pressed into pellets at 250 MPa and sintered at 1,550°C and 1,700°C for 6 hours in an atmosphere of 4%H2-Ar. The prepared UO2 and SIMFUEL pellets were placed in PTFE Teflon vessels and filled with deionized water to identify the leaching behavior by a long-term leaching experiment under the similar condition to a repository for the safe disposal.
[ ] 펠릿 20 kg HM/batch용 분말화 장치는 차세대관리 공정의 금속전환로 안으로 균질화된 분말을 공급하기 위하여 펠릿을 산화하여 으로 분말화하는 장치이다. 본 연구에는 펠릿 20 kg HM/batch용 분말화 장치 설계모델을 제시하고, 실증용 분말화 장치를 제작하여 검증실험을 수행한다. 분말화 장치 설계모델은 내부구조, 성능, 가열로 위치와 크기 등이 고려된다. 실험 방법은 펠릿 20 kg HM/batch용 분말화 장치 설계 모델에 따라 기존의 3단 메시 분말화 장치를 이용하여 분말의 메시 투과시험과 온도변화 특성 실험을 하여 장치 내부구조를 결정한다. 펠릿 20 kg HM/batch의 산화 반응도 실험과 가열로 위치별 온도 분포를 측정하고 장치의 성능과 가열로의 영 역 위치를 결정한다. 장치 크기를 결정하기 위하여 산화전의 20kg의 펠릿과 산화후의 부피를 측정한다. 이상의 결과를 토대로 실증용 분말화 장치를 설계. 제작하고, 검증을 위하여 산화도, 분말특성 및 분석 등을 수행하였다. 산화반응 실험결과 에서 기존장치에 비하여 분말의 메시 투과율이 향상되었으며, 기존의 3단 메시 장치의 펠릿산화시간이 13시간 소요된 것에 비하여 8시간으로 단축되었다. 분말 특성 분석결과, 평균 입도가 이었다. 제작된 펠릿 20 kg HM/batch용 분말화 장치 성능과 설계모델 예측 값은 대체로 잘 일치되었다.
UO2-6wt%Gd2O3가연성 독물질 소결체에 미량첨가한 Al 화합물(Al(OH)3, ADS(aluminium disterate), Al(OH)3+ADS)이 소결성 및 미세조직에 미치는 영향을 고찰하고자 하였다. 이를 위하여 Al이 첨가된 UO2-6wt%Gd2O3압분체를 1700˚C, 수소 분위기에서 4시간동안 소결한 후 특성시험을 수행하였다 Al을 첨가한 UO2-6wt%Gd2O3의 소결밀도는 94% T.D.이상이였고, ADS를 이용한 Al 첨가가 개기공도 감소에 상대적으로 크게 기여하였다. 또한 Al을 첨가하면 10μm 이상의 큰 기공과 1μm 이하의 작은 기공은 많이 줄어들었고 첨가된 Al 화합물의 종류와는 무관하게 평균 기공크기는 2-3μm였다. 그리고 Al을 첨가하지 않은 소결체의 결정립은 이중 결정립 형태를 갖는 반면에 Al을 첨가하면 결정립은 균일하였다. 특히, ADS를 첨가한 소결체의 평균 결정립 크기는 4.6μm로 가장크게 증가하였다.