This paper presents the resizing method of columns and beams that considers column-to-beam strength ratios to simultaneously control the initial stiffness and ductility of steel moment frames. The proposed method minimizes the top-floor displacement of a structure while satisfying the constraint conditions with respect to the total structural weight and column-to-beam strength ratios. The design variable considered in this method is the sectional area of structural members, and the sequential quadratic programming(SQP) technique is used to obtain optimal results from the problem formulation. The unit load method is applied to determine the displacement participation factor of each member for the top floor lateral displacement; based on this, the sectional area of each member undergoes a resizing process to minimize the top-floor lateral displacement. Resizing members by using the displacement participation factor of each member leads to increasing the initial stiffness of the structure. Additionally, the proposed method enables the ductility control of a structure by adjusting the column-to-beam strength ratio. The applicability of the proposed optimal drift design method is validated by applying it to the steel moment frame example. As a result, it is confirmed that the initial stiffness and ductility could be controlled by the proposed method without the repetitive structural analysis and the increment of structural weights.
This paper considers automated storage and retrieval systems with double shuttle. We develop the travel time model based on the first come first service rule. We evaluate the performance of the double shuttle system working on the four command cycle.
National Institute of Environmental Research (NIER) has proposed new methodology for estimating unit load in order to overcome the limitations of past unit load based on short-term and local area based data. In the case of agricultural land, however, the results presented by NIER are still limited because of various agricultural activities and farmland characteristics. In this study, liquid manure treated paddy field and organic farming upland were selected for considering agricultural diversity. Four different methods for evaluating unit load were used for comparing previous research results. The results of different methods presented various trends compared with those of existing studies. Paddy field treated liquid manure was 1.3 times higher for T-N load and 3.1 times for T-P load than conventional paddy field. Conventional upland was 4.4 times higher for T-N load and 1.8 times higher for T-P load than organic farming upland. In the case of non-conventional farmland, this study showed different values with the unit loads presented by NIER. This implies that it is necessary to review and apply the unit loads considering various agricultural conditions when establishing environmental policy and rural planning.
In recent years, the United States has used the Load Duration Curve (LDC) method to identify water pollution problems, considering the size of the pollutant load in the entire stream flow condition to effectively evaluate Total Maximum Daily Loads (TMDLs). A study on the improvement of the target water quality evaluation method was carried out by comparing evaluations of two consecutive years of water quality and LDC data for 41 unit watersheds (14 main streams and 27 tributaries). As a result, the achievement rate of the target water quality evaluation method, according to current regulations, was 68-93%, and that by the LDC method was 82-93%. Evaluating the target water quality using the LDC method results in a reduction in the administrative burden and the total amount of planning as compared to the current method.
It has becoming issue of damage in finishing materials of the exterior and interior when have to the transportation and lifting. So the purpose of this study is analyze for correlation of load on connecting part of unit modular when transporting unit modular by vehicle
In this Study, lateral load resistance system is proposed to apply 12 story modular buildings to which X and inverted-V bracing is applied. The purposed system is analytically evaluated to determine the feasibility. As results, the inverted-V bracing is best suited for core system of 12 story modular building.