건강증진센터를 방문한 환자를 대상으로 CT 지방측정 위치에 따른 내장지방 면적과 Inbody로 측정한 내장지방 면적의 차이를 비교하여 보았다. CT 지방측정에서 L4-5와 CT Umbilicus 위치에서 측정한 내장지방 면적은 남·여 성별에 다른 차이는 없었다. 또한, CT 지방측정 위치에 따른 내장지방 면적과 Inbody로 측정한 내장지방 면적과의 상관관계에서 CT 내장지방 면적과 Inbody로 측정한 내장지방 면적 간의 차이가 없 었다. CT 내장지방 측정 위치는 남자 L4-5, L5-S1 위치, 여자 L3-4, L4-5, L5-S1, Umbilicus 위치에서 높은 상관관계를 보였다. Inbody 내장지방 면적과 CT 내장지방 면적 관계 간의 연구를 할 때 CT L4-5 위치의 내 장지방 면적과 비교하는 것을 제안한다.
The objectives of this study were to evaluate the effect of replacing 40% corn meal with three different types of barley (Youngyang, Wooho, and Yuyeon) on the chemical compositions, microbial indices, gas emission, and volatile fatty acid (VFA) content in feces of growing pigs. Sixteen pigs (Landrace × Yorkshire × Duroc) with an initial average body weight of 71 ± 2 kg were maintained in metabolic cages and randomly allotted to four treatments containing different sources of barley, for 23 days. The treatment with three different barley types replacing 40% ground corn showed no effect (P>0.05) on fecal chemical compositions, microbial indices, gas emission, and VFA. However, some differences (P<0.05) were noted in the chemical compositions of crude fiber and ash, and in the levels of Lactobacillus and Salmonella in the feces of the growing pigs. In conclusion, methane and hydrogen sulfide decreased by replacing 40% corn meal with Youngyang and Wooho barley, respectively.
This study was conducted to determine the effects of mixed Korean red ginseng marc with aluminum sulfate on gas concentration and volatile fatty acid (VFA) in poultry litter during 4 weeks in terms of livestock and environment managements. A total of 240 broiler chicks were randomly allocated to four treatments in four replications and 15 birds per replicate. The four treatments was mixed to rice hull under each pen at 0, 10 g or 20 g red ginseng marc + 90g aluminum sulfate, and 100g aluminum sulfate per kg poultry litter (rice hulls). Carbon dioxide, methane, acetic acid, and propionic acids were measured weekly. The results that could be available include: First, during the experimental period, carbon dioxide emissions were not remarkably different among treatments. Second, no differences were observed among treatments in methane emissions at 2 weeks through 4 weeks, but at 1 week, the reduction in methane emissions was in following order: 100 g aluminum sulfate > 20 g red ginseng marc + 90 g aluminum sulfate > 10 g red ginseng marc + 90 g aluminum sulfate > control. Third, in spite of statistically differences, treatment with 10 g or 20 g red ginseng marc + 90g aluminum sulfate, and 100g aluminum sulfate reduced acetic acid and propionic acid as a function of time, except acetic acid in aluminum sulfate treatment at 2 and 4 weeks.
In conclusion, the results indicated that like aluminum sulfate, using 10 g or 20 g red ginseng marc with aluminum sulfate was effective in decreasing methane and propionic acid released from poultry litter.