This study was conducted to evaluate the forage productivity and feed value of Sasa borealis (S. borealis) using growing black goats(S. borealis) in order to improve the utilization of S. borealis and to help mitigate the problem of reduced plant species diversity caused by S. borealis in Hanlla Mountain. One control and three treatments were made by the level of addition of S. borealis silage to the TMR feed. T1(10%), T2(20%), and T3(30%) treatments showed more daily weight gains than control group. Feed conversion ratio of T2 is 4.4g, which is significantly lower than control(P<0.05). The nitrogen retention in the control, which had relatively high dry matter intake, was 12.5g, which was significantly higher than that of T3. Sasa. borealis silage is considered to be able to use as a forage source for black goats, and if it is fed in an appropriate amount, it is considered that it will help improve livestock productivity, such as weight gain and feed conversion ratio.
This study was conducted to determine the maintenance energy requirements of growing goats in order to establish an appropriate energy benefit system, to reduce feed costs and improve livestock productivity of goat farmers, and to present basic data for detailed specifications afterwards. This experiment was conducted as a group specification test for a total of 3 months, with 32 goats of three months age and conducted by four treatments with different energy levels (T1: NRC+0%, T2: NRC+10%, T3: NRC+20%, and T4: NRC+ 30%). The average daily gain was the highest in the treated with NRC + 10% of the energy level of the experimental diet, and the feed conversion ratio was in the range of 6.3 g to 7.3 g in the group feeding experiment. Although there was no significant difference in digestibility between treatments, the digestibility of dry matter, crude protein, and crude fat was higher in T2 treated with NRC + 10% than the other treatments. Through the regression equation of the values of MEI and ADG obtained through the experiment (Y=0.5439X+ 111.51, R2=0.712), the maintenance energy requirement of the goat in the growing period was estimated to be 111.51 kcal/kgBW0.75.
A two-year study was conducted from 2017 to 2018 by the establishment of a test field at Chungju-si and Cheongyang-gun. Plant height, number of leaves, insects and diseases, and fresh and dry matter yields for corn hybrid(‘Kwangpyeongok’) were investigated. Daily average, maximum, and minimum temperature, monthly average temperature, daily precipitation, and sunshine duration during the growing season were investigated. We selected climate-critical factors to corn productivity and conducted an evaluation of vulnerability to climate change from 1999 to 2018 for both regions. In 2018, the dry matter yield of forage corn was 6,475 and 7,511 kg/ha in Chungju and Cheongyang, respectively, which was half of that in 2017. The high temperature and drought phenomenon in the 2018 summer caused the corn yield to be low. As well as temperature, precipitation is an important climatic factor in corn production. As a result of climate impact vulnerability assessment, the vulnerability has increased recently compared to the past. It is anticipated that if the high temperature phenomenon and drought caused by climate change continues, a damage in corn production will occur.
This study was conducted to evaluate the forage production and feed value of Sasa borealis (S. borealis) in Jeju Island in order to improve the utilization of Sasa borealis and to help mitigate the problem of reduced plant species diversity caused by S. borealis in Hanlla Mountain. To investigate the forage production, three quadrat structures were installed in the S. borealis natural community in the middle part of Hanlla Mountain. From May to October 2017, S. borealis in quadrats was cut at a fixed time of each month, and then forage production and regenerated acidity per kg/ha were evaluated. For the evaluation of feed value, compositional analysis was performed on the monthly samples. In vitro digestion experiments were carried out using cannula mounted Hanwoo. In vitro neutral detergent fiber digestibility(IVNDFD) and in vitro acid detergent fiber digestibility(IVADFD) were measured after the experiment. Forage production of S. borealis showed relatively good regeneration ability in May and June, but the regeneration ability decreased as the cutting was repeated. In order to use S. borealis as a forage, it is considered efficient to feed black goats with good fiber decomposition or horses good palatability to S. borealis and relatively good digestibility.
The study was conducted to determine effects on forage productivity, feed value, grazing intensity and livestock productivity in growing Korean native female goat grazing in native pasture. Its with average initial body weight of 14.10±3.6kg and an average age of 4 months were used in this study. Dry matter content of native pasture was the highest at 33.48 ± 2.56% in June, and the content was significantly increased from spring to autumn (p<0.05). Crude protein was maintained between 11% and 12% on average. Nutrient content was maintained at a certain level in native pasture, but there were differences due to the different types of wild grasses produced in each season. The productivity of forage crops increased from June, but decreased after August and showed a characteristic of grassland where productivity decreased rapidly in spring and autumn. The average grazing intensity are 39 head/ha. Black goat average daily gain was 80.2g/d. The stable weight gain in grazing is that the nutrient requirement of the black goat was met by supplementing the concentrated feed during grazing. study, can be expected that the productivity of livestock can be increased through the proper feeding of supplementary feed and maintenance of grazing intensity
This study was conducted to evaluate the protein requirement for maintenance of fattening Korean black goat (Capra hircus coreanae). Six male goats with average initial body weight (BW) of 31.78±4.54kg and an average age of 8 months were used in this study. The experiment had a replicated duplicated 3×3 Latin square design for balancing carryover effects. In the course of the experiment, each of Black goats were fed three diets that were formulated to contain T1 (13%), T2 (16%) and T3 (19%) levels of crude protein (CP). A 14-day diet adjustment period was followed by a 5-day collection period. Dry matter intake (DMI) of groups fed diets with T2 was 966.67g/d which was higher than group fed diets with T1 and T3 were 925.14g/d and 936.08g/d each. Average daily gains (ADG) of black goats were the highest in T2(167.13g/d) But, there was no significant difference. Dietary protein levels affected the apparent digestibility of CP (p<0.05). A significant difference was found in CP intake among treatments and goats receiving T3, T2, and T1 recorded 181.23, 154.57, and 128.78g CP/d, respectively. This was excepted because CP intake is proportional to CP content of diet, which from highest to lowest was as follows: T3 (19%) > T2 (16%) > T1 (13%). Intercept of the regression equation between CP intake and CP balance indicated that maintenance CP requirement was 1.63g/BW0.75.
This study was conducted to determine grazing intensity of growing Korean native goats (Capra hircus coreanae) on mountainous pasture. It was carried out to obtain basic information for improvement of mountainous pasture management and establishing feeding system of Korean native goats. Castrated, male goats (n=10) with average initial body weight (BW) of 23.33±2.15kg and an average age of 4 months were used in this study. Grazing goats were supplemented by concentrates with 1.0% of BW. The crude protein content of forage was the highest in October (22.71±0.25%) and there were significantly differences (p<0.05) in monthly comparison. The forage productivity of pasture was the highest from May to June (1718.7±207.5~ 1672.0±422.8 kg/ha) but it was decreased in July (1356.0±103.8 kg/ha) because of drought and summer depression. Average daily gains (ADG) of goats were the highest in June (99.5±6.4 d/g). Grazing intensity was calculated by forage productivity and dry matter intake (DMI) and was the highest in May (65 head/ha). As shown in the results of this research, grazing intensity was suggested to average 39 head/ha from May to October. It is desirable that adequate grazing intensity was maintained by adjusting supplemental feed.