검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2018.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        W-10 wt% Ti alloys that have a homogeneous microstructure are prepared by thermal decomposition of WO3-TiH2 powder mixtures and spark plasma sintering. The reduction and dehydrogenation behavior of WO3 and TiH2 are analyzed by temperature programmed reduction and a thermogravimetric method, respectively. The X-ray diffraction analysis of the powder mixture, heat-treated in an argon atmosphere, shows W- oxides and TiO2 peaks. Conversely, the powder mixtures heated in a hydrogen atmosphere are composed of W, WO2 and TiO2 phases at 600 ℃ and W and W-rich β phases at 800 ℃. The densified specimen by spark plasma sintering at 1500 ℃ in a vacuum using hydrogen-reduced WO3-TiH2 powder mixtures shows a Vickers hardness value of 4.6 GPa and a homogeneous microstructure with pure W, β and Ti phases. The phase evolution dependent on the atmosphere and temperature is explained by the thermal decomposition and reaction behavior of WO3 and TiH2.
        4,000원
        2.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Porous W-10 wt% Ti alloys are prepared by freeze-drying a WO3-TiH2/camphene slurry, using a sintering process. X-ray diffraction analysis of the heat-treated powder in an argon atmosphere shows the WO3 peak of the starting powder and reaction-phase peaks such as WO2.9, WO2, and TiO2 peaks. In contrast, a powder mixture heated in a hydrogen atmosphere is composed of the W and TiW phases. The formation of reaction phases that are dependent on the atmosphere is explained by a thermodynamic consideration of the reduction behavior of WO3 and the dehydrogenation reaction of TiH2. To fabricate a porous W-Ti alloy, the camphene slurry is frozen at -30℃, and pores are generated in the frozen specimens by the sublimation of camphene while drying in air. The green body is hydrogen-reduced and sintered at 1000℃ for 1 h. The sintered sample prepared by freeze-drying the camphene slurry shows large and aligned parallel pores in the camphene growth direction, and small pores in the internal walls of the large pores. The strut between large pores consists of very fine particles with partial necking between them.
        4,000원
        3.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A Nanosized WO3 and CuO powder mixture is prepared using novel high-energy ball milling in a bead mill to obtain a W-Cu nanocomposite powder, and the effect of milling time on the structural characteristics of WO3-CuO powder mixtures is investigated. The results show that the ball-milled WO3-CuO powder mixture reaches at steady state after 10 h milling, characterized by the uniform and narrow particle size distribution with primary crystalline sizes below 50 nm, a specific surface area of 37 m2/g, and powder mean particle size (D50) of 0.57 μm. The WO3-CuO powder mixtures milled for 10 h are heat-treated at different temperatures in H2 atmosphere to produce W-Cu powder. The XRD results shows that both the WO3 and CuO phases can be reduced to W and Cu phases at temperatures over 700oC. The reduced W-Cu nanocomposite powder exhibits excellent sinterability, and the ultrafine W-Cu composite can be obtained by the Cu liquid phase sintering process.
        4,000원
        4.
        2017.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effects of the heat treatment temperature and of the atmosphere on the dehydrogenation and hydrogen reduction of ball-milled TiH2-WO3 powder mixtures are investigated for the synthesis of Ti-W powders with controlled microstructure. Homogeneously mixed powders with refined TiH2 particles are successfully prepared by ball milling for 24 h. X-ray diffraction (XRD) analyses show that the powder mixture heat-treated in Ar atmosphere is composed of Ti, Ti2O, and W phases, regardless of the heat treatment temperature. However, XRD results for the powder mixture, heat-treated at 600oC in a hydrogen atmosphere, show TiH2 and TiH peaks as well as reaction phase peaks of Ti oxides and W, while the powder mixture heat-treated at 900oC exhibits only XRD peaks attributed to Ti oxides and W. The formation behavior of the reaction phases that are dependent on the heat treatment temperature and on the atmosphere is explained by thermodynamic considerations for the dehydrogenation reaction of TiH2, the hydrogen reduction of WO3 and the partial oxidation of dehydrogenated Ti.
        4,000원
        5.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Porous W with controlled pore structure was fabricated by thermal decomposition and hydrogen reduction process of PMMA beads and WO3 powder compacts. The PMMA sizes of 8 and 50 μm were used as pore forming agent for fabricating the porous W. The WO3 powder compacts with 20 and 70 vol% PMMA were prepared by uniaxial pressing and sintered for 2 h at 1200oC in hydrogen atmosphere. TGA analysis revealed that the PMMA was decomposed at about 400oC and WO3 was reduced to metallic W at 800oC. Large pores in the sintered specimens were formed by thermal decomposition of spherical PMMA, and their size was increased with increase in PMMA size and the amount of PMMA addition. Also the pore shape was changed from spherical to irregular form with increasing PMMA contents due to the agglomeration of PMMA in the powder mixing process.
        4,000원
        6.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The most general photocatalyst, TiO2 and WO3, are acknowledged to be ineffective in range of visible light. Therefore, many efforts have been directed at improving their activity such as: band-gap narrowing with non-metal element doping and making composites with high specific surface area to effectively separate electrons and holes. In this paper, the method was introduced to prepare a photo-active catalyst to visible irradiation by making a mixture with TiO2 and WO3. In the TiO2-WO3 composite, WO3 absorbs visible light creating excited electrons and holes while some of the excited electrons move to TiO2 and the holes remain in WO3. This charge separation reduces electron-hole recombination resulting in an enhancement of photocatalytic activity. Added Ag plays the role of electron acceptor, retarding the recombination rate of excited electrons and holes. In making a mixture of TiO2-WO3 composite, the mixing route affects the photocatalytic activity. The planetary ball-mill method is more effective than magnetic stirring route, owing to a more effective dispersion of aggregated powders. The volume ratio of TiO2(4) and WO3(6) shows the most effective photocatalytic activity in the range of visible light in the view point of effective separation of electrons and holes.
        4,000원
        7.
        2003.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A chemical vapor condensation (CVC) process using the pyrolysis of metal-organic precursors was applied to produce the nanosized powders. Morphology and phase changes of the synthesized powder as a function of CVC parameters were investigated by XRD, BET and TEM. The agglomerated nanosized monoclinic powders with nearly spherical shape and 10-38 nm in mean diameter could be obtained. Conditions to produce the nanopowders are presented in this paper
        3,000원