검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        2.
        2018.07 KCI 등재 서비스 종료(열람 제한)
        Waste concrete powder generated during the process of recycling waste concrete into aggregate has a low recycling rate. This is because fine particles of waste concrete powder and cement components are present. Therefore, in this study, waste concrete powder is used as a raw material for centrifugal concrete. Experimental results show that waste concrete powder has cement and aggregate composition, SEM image has irregular shape, C-S-H and Ettringite exist inside. Waste concrete powder showed the same strength, up to 5% in terms of strength by age according to the substitution rate. Also, as the strength characteristics varied according to the centrifugal forming force, the substitution rate of siliceous matter increased by 5% and the strength decreased by substitution rate of 5%. Because of this study, it is considered difficult to use waste concrete powder as a substitute for silica sand because of the resulting characteristics of centrifugal concrete. It is recommended that economic and environmental concerns be considered when some substitution is made for silica sand.
        3.
        2018.04 서비스 종료(열람 제한)
        The purpose of this study is to develop a durable packaging concrete using silica - based LCD waste glass. In order to verify the performance of the waste glass mixed pavement concrete, four types of concrete mixture were classified into general concrete, fly ash concrete, LCD concrete and LCD + fly ash concrete. The performance of the durable concrete pavement was tested for compressive strength, alkali - silica reaction, freezing - thawing, saltation and abrasion resistance. The purpose of this study was to develop a high - performance pavement concrete manufacturing technology using LCD waste glass powder.
        4.
        2017.01 KCI 등재 서비스 종료(열람 제한)
        This study investigated the compressive strength characteristics of concrete and mortar containing waste pottery fine powder. To identify the effects of waste pottery fine powder on the compressive strength of concrete and mortar, cement was replaced with waste pottery fine powder at 5, 10 and 15% rates and the variations in compressive strength were evaluated. For high strength concrete, compared with a control mix, 5% replacement resulted in the reduction of 3.4% in compressive strength at 7 days; however, at 28 days, the strength actually increased by 2.5%. For normal strength concrete, compared with a control mix, 5% replacement resulted in the reduction of 20.4% in compressive strength at 7 days, and 14% reduction at 28 days. As for the mortar, at 5% replacement, compared with a control mortar mix, compressive strength of mortar decreased by 3% at 7 days, while an increase of 5.9% was observed at 28 days. Therefore, the optimum replacement rate of cement with waste pottery fine powder appears to be 5%.
        5.
        2016.10 서비스 종료(열람 제한)
        This paper describes the findings of the study conducted to evaluate compressive strength characteristics of high-strength concrete containing waste pottery fine powder. The experimental variables selected were 5, 10, and 15 percent replacements of cement with waste pottery fine powder. The findings are summarized as follows: (1) compared with the strength of the control specimens with no replacement rate, compressive strength of the concrete at 7days decreased by 4% at 5% replacement rate of cement with waste pottery fine powder, but (2) compressive strength of the concrete at 28days increased slightly by 1.3%..
        6.
        2016.04 서비스 종료(열람 제한)
        In this research we carried out the compressive strength, modulus of rupture and scaling resistance tests in order to evaluate the durability of concrete pavement containing waste glass powder. As a results of this research, the concretes incorporating 20% waste glass powder had higher compressive strengths and modulus of ruptures than the concretes with 20% fly-ash. Also, they had a better scaling resistance than ordinary portland cement concretes and fly ash concretes.
        7.
        2015.10 서비스 종료(열람 제한)
        This paper describes the findings of the study conducted to evaluate early-age strength characteristics of rapid-setting concrete containing waste pottery powder. The experimental variables selected were 5, 10, and 15 percent replacements of cement with waste pottery powder. The findings are summarized as follows: (1) slump of the concrete decreased as the replacement rate of cement with waste pottery powder increased, and (2) compared with the strength of the control specimens with no replacement rate, compressive strength of concrete increased at 5% replacement rate, and was comparable to the control at 10% replacement rate; however, at 15% replacement rate, compressive strength actually decreased.
        8.
        2015.10 서비스 종료(열람 제한)
        In this study, try to evaluate the basic material mechanical properties of 80 MPa class high strength concrete mixed with LCD waste glass fine powder. a high level of compressive strength is required for marine concrete mix design.
        9.
        2015.04 서비스 종료(열람 제한)
        In this research, We carried out compressive, chloride ion penetration and scaling, freezing-thawing test. These test will evaluate the durability of Waste Glass Powder(WG) and Sludge(WGS) concrete. In result, the compressive strength of containing WG, WGS increased rather than OPC in age 90 days. Also, resistance of chloride ion penetration and scaling, freezing-thawing confirmed excellent rather than OPC.