검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To mitigate carbon emissions, the government aims to transition to renewable energy sources including hydrothermal energy, specifically through wastewater heat recovery. This process involves extracting heat from wastewater or treated water. However, assessments of demand sources for local cooling and heating have predominantly focused on the proximity of nearby facilities, without conducting comprehensive demand analyses or defining explicit supply areas. This study proposes a methodology for prioritizing suitable wastewater treatment plants (WWTPs) for the implementation and expansion of renewable energy. The methodology is based on the gross floor area of potential wastewater heat demand surrounding WWTPs. Initially, potential supply and demand sources were identified based on the capacity of WWTPs and the gross floor area of buildings capable of utilizing wastewater heat. In the Republic of Korea, 330 WWTPs with a capacity of 5,000 m3/day or more have been recognized as demand sources for wastewater heat recovery. The provision of treated wastewater to structures located within a 500 m radius of the WWTPs for heat recovery is considered a feasible option. The potential wastewater heat demand and renewable energy cluster were identified among the surrounding buildings and complexes A total of 13 potential supplies were identified, provided that the gross floor exceeded 60,000 m². Finally, after prioritizing based on WWTPs with these conditions, the underground plant located in the downtown area was ranked as the highest priority. If further analysis of economic feasibility, CO2 reduction, and energy efficiency are conducted, this approach can be expanded and applied within the framework the Water-Energy Nexus. Wastewater heat can be utilized not only as a renewable energy source but also as a means to enhance wastewater reuse through the supply of treated wastewater.
        4,300원
        2.
        2017.05 서비스 종료(열람 제한)
        최근 산업발전에 따른 폐기물의 발생량과 재활용되지 못하고 매립되는 폐기물이 증가하고 있다. 우리나라는 국토환경의 제약에 따라 매년 증가하는 폐기물에 대해 “미처리폐기물의 매립제로화”를 주요과제로 추진하고 있다. 또한 2035년 까지 재활용가능 폐기물의 직매립을 금지하고, 매립처리비율 1% 이하로 달성하고자 한다. 따라서 2015년도 “폐기물 발생 및 처리현황(2015)” 에서 매립처리가 23,577 톤/일로 가장 많은 사업장배출시설계 폐기물을 분석하였다. 그중 오니류 폐기물의 매립처리가 8,926 톤/일로 사업장배출시설계폐기물의 매립처리량대비 약 38 %의 비율을 차지하고 있다. 오니류의 경우 유기성과 무기성으로 구분되어지고 하수처리오니, 폐수처리오니 등으로 구분되어진다. 특히 폐수처리오니의 경우 사업장 별 업종이 무수히 다양하기 때문에 매립억제를 위한 특성조사는 한국표준산업분류코드를 이용하여 구분하였다. 본 연구는 매립되는 하・폐수처리오니를 유・무기성으로 분류하고 배출사업장 업종별로 구분한 처리현황과 매립되고 있는 오니류의 에너지회수 대상으로서 가능성을 보기위한 삼성분, 발열량 및 원소분석의 특성을 고찰하였다. 전체 업종의 유기성오니류 평균은 수분함량 71.7 %, VS의 함량은 60.6 %, FS의 함량은 39.4 %이며, 발열량은 2,948 kcal/kg로 나타났다. 무기성오니류의 수분함량은 65.8 %, VS의 함량은 27.1 %, FS의 함량은 72.9 %이며, 발열량은 1,096 kcal/kg로 나타났다. 따라서 유기성오니류의 에너지회수 가능성을 확인하였고 이를 통한 사업장배출시설계폐기물의 매립저감이 예상된다.
        3.
        2015.05 서비스 종료(열람 제한)
        Livestock Wastewater shall cause a high concentration of organic matter and nutrients such as rivers because of the lake and groundwater contamination, such as the accumulation of nutrients in the soil contained in the manure, livestock wastewater containing large amounts of organic matter that will flow to the river or appeal If eutrophication, and comfortable living environment to cause harm, such as odor and pest damage and can. Organic waste and organic waste, such as the world has a direct interest in acquiring the available resources and the development of clean energy from waste is a growing desire, is expected to contribute to the environment from waste materials industry growth by developing innovative technologies such as direct electrical energy production. In the case of livestock waste water and high concentration of organic material in addition to containing ammonia nitrogen, nitrate nitrogen for nitrification is created due to the electron acceptor is used as the fuel cell according to this has been reported to decrease the efficiency of electricity production. Therefore, to derive the electricity production efficiency due to organic concentration and ammonia nitrogen concentration in order to apply a microbial fuel cell (MFC) livestock wastewater treatment process in this study, and to derive the energy production potential with livestock waste water through the study. Lab. scale Reactor fabrication and operation to try to derive the reaction factor of the optimum operating conditions in accordance with the livestock wastewater applied through the evaluation of trends and removal efficiency of organic matter and nutrients in the microbial fuel cell. In addition, from the final research results, I try to present the direction of future research for the improvement of application possibilities and microbial fuel cell power generation efficiency of microbial fuel cell in the livestock wastewater treatment facilities.