Hydrogen isotope separation involves the separation of hydrogen, deuterium, tritium, and their isotopologues. It is an essential technology for removing radioactive tritium contamination and for obtaining valuable hydrogen isotope resources. Among various hydrogen isotope separation technologies, water electrolysis technology exhibits a high separation factor. Consequently, the electrolysis of tritiated water is of paramount importance as a tritium enrichment method for treating tritium-contaminated water and for analyzing tritium in environmental samples. More recently, hydroelectrolysis technology, which utilizes proton exchange membranes (PEM) to reduce water inventory, has gained favor over traditional alkaline hydroelectrolysis. Nevertheless, it is crucial to decrease the hydrogen permeability of the PEM in order to mitigate the explosion risk associated with tritium hydrogen electrolysis devices. Additionally, efforts are needed to enhance the hydrogen isotope selectivity of the PEM and optimize the manufacturing process of the membrane-electrode assembly (MEA), thereby improving both hydrogen isotope separation performance and water electrolysis efficiency. In this presentation, we will delve into two key aspects. Firstly, we’ll explore the reduction of hydrogen permeability and the enhancement of the hydrogen isotope separation factor in PEM through the incorporation of 2D nanomaterial additives. Secondly, we’ll examine the influence of various MEAs preparation methods on electrolysis and isotope separation performances. Lastly, we will discuss the effectiveness of the developed system in separating deuterium and tritium.
Korea Atomic Energy Research Institute’s Post Irradiated Examination Facility safely stores spent nuclear fuel using a wet storage method to conduct research. Here, in order to remove the radioactivity released into the water, the stored water is passed through an ion exchange resin tower, and the radionuclides are exchanged with the bead-shaped ion exchange resin filled inside to lower the radioactivity concentration. At this time, because the stored water passes in one direction, clogging of the ion exchange resin occurs. If this phenomenon continues, the flow rate of the water treatment process decreases and operation efficiency decreases, so a backwashing process is necessary to re-mix the ion exchange resin and secure the flow rate again. In this study, the flow rate reduction trend according to the lifespan of the ion exchange resin and the flow rate recovery according to the backwash process operation amount were analyzed. The flow rate reduction trend of the ion exchange process was analyzed immediately after the backwashing process was started. In addition, the amount of flow recovery according to the backwash process operation amount was evaluated by the amount of waste generated during the backwash process and the number of days of operation until the backwash process was needed again. As a result, the flow rate of the ion exchange process decreased rapidly right after the backwash process until the position of the ion exchange resins was stabilized, and then stabilized. After that, it gradually decreased and reached the point where the backwash process was necessary. However, the decline trend was analyzed to be the same regardless of the lifespan of the ion exchange resin. In addition, the amount of waste generated during the operation of the backwash process was increased in the order of 400 L, 600 L, 1,100 L, 1,400 L, 3,500 L, and 4,200 L to increase the amount of operation of the backwash process. As a result, the number of days of ion exchange resin operation was 285 days, 338 days, and 342 days, was analyzed as 422 days, 322 days, and 720 days. Based on this study, it was confirmed that the flow rate reduction trend is the same regardless of the lifespan of the ion exchange resin, and as the backwash process operation increases, the number of days the ion exchange process can be operated increases, but there is a turning point where the waste treatment cost exceeds the number of days of operation.
새만금 호의 수질 개선을 위하여 국가에서 해수 유통을 증가시킴에 따라 해수 유통 빈도 증가로 인한 새만금 호 내 염분과 저 층수 교환 변화를 알아보기 위하여, EFDC(Environmental Fluid Dynamics Code) 모델을 이용하였다. 갑문 개폐 횟수를 하루 1회에서 2회로 증 가했을 때, 새만금 호 내부 수위는 최대 약 0.7 m 상승하였다. 염분은 서측 방조제 근방에서 2.12 psu 증가하였으며, 담수 유입 부근에서는 1.18 psu 감소하였다. 입자추적을 이용하여 저층수 교환 정도 분석한 결과, 수심 5m 이하 입자 잔류율은 Case 2(1일 2회 개방)에서 Case 1(1 일 1회 개방)에 비해 2.52% 감소한 것으로 나타났다. 이는 수문 개폐 횟수를 증가시켰을 때, 저층수 교환이 더 활발해 질 수 있다는 것을 알 수 있다. 따라서 해수 유통 증가에 따른 염분 및 저층수 교환 증가로 새만금 호의 수질 개선이 될 수 있다고 판단된다.
Bentonite, a material mainly used in buffer and backfill of the engineering barrier system (EBS) that makes up the deep geological repository, is a porous material, thus porewater could be contained in it. The porewater components will be changed through ‘water exchange’ with groundwater as time passes after emplacement of subsystems containing bentonite in the repository. ‘Water exchange’ is a phenomenon in which porewater and groundwater components are exchanged in the process of groundwater inflow into bentonite, which affects swelling property and radionuclide sorption of bentonite. Therefore, it is necessary to assess conformity with the performance target and safety function for bentonite. Accordingly, we reviewed how to handle the ‘water exchange’ phenomenon in the performance assessment conducted as part of the operating license application for the deep geological repository in Finland, and suggested studies and/or data required for the performance assessment of the domestic disposal facility on the basis of the results. In the previous assessment in Finland, after dividing the disposal site into a number of areas, reference and bounding groundwaters were defined considering various parameters by depth and climate change (i.e. phase). Subsequently, after defining reference and bounding porewaters in consideration of water exchange with porewater for each groundwater type, the swelling and radionuclides sorption of bentonite were assessed through analyzing components of the reference porewater. From the Finnish case, it is confirmed that the following are important from the perspective of water exchange: (a) definition of reference porewater, and (b) variations in cation concentration and cation exchange capacity (CEC) in porewater. For applying items above to the domestic disposal facility, the site-specific parameters should be reflected for the following: structure of the bedrock, groundwater composition, and initial components of bentonite selected. In addition, studies on the following should be required for identifying properties of the domestic disposal site: (1) variations in groundwater composition by subsurface depth, (2) variations in groundwater properties by time frame, and (3) investigation on the bedrock structure, and (4) survey on initial composition of porewater in selected bentonite The results of this study are presumed to be directly applied to the design and performance assessment for buffer and backfill materials, which are important components that make up the domestic disposal facility, given the site-specific data.
본 연구에서는 음이온 교환막 수전해 시스템에 적용가능성을 확인하고자 상용 음이온 교환막인 FAA-3-50, Neosepta-ASE, Sustainion grade T, Fujifilm type 10의 관련 물성을 평가하였다. 음이온교환막을 이용하는 특성상 음이온교환 기의 확인을 위하여 SEM/EDX를 이용하여 상용막의 모폴로지와 표면의 원소를 분석하여 상용막이 포함하고 있는 작용기의 분포를 확인하였다. 또한, UTM과 TGA를 이용하여 기계적 강도 및 열분해온도를 측정하여 수전해의 구동조건을 만족하는지 확인하였다. 음이온 교환막으로서의 성능을 파악하기 위하여 중요한 특성인 이온교환용량과 이온전도도를 측정하였으며, 알 칼리 환경에서 구동되기 때문에 각각의 상용막의 내알칼리성을 확인하기 위한 내구성 테스트를 진행하여 비교하였다. 최종적 으로 막-전극 접합체를 제조하여 수전해 single cell test를 진행하여 60°C, 70°C, 80°C의 온도 조건에서 cell 성능을 확인하였 고 장기 cell test로 다른 온도에서 20 cycle 측정하여 수전해 성능을 비교하여 상용막의 음이온 교환막 수전해에 적용가능성 을 비교하여 확인하였다.
재생에너지의 보급과 기후변화를 대응하기 위한 해결책으로 수소에너지에 대한 관심이 늘어나고 있다. 수소는 미 이용 전력을 대용량 장주기로 저장하기에 가장 적합한 수단이며 이러한 수소를 생산하는 기술 중 수전해는 물에 전기에너지 를 인가하여 수소를 생산하는 친환경적 수소생산 기술로 알려져 있다. 수전해의 구성 요소 중 분리막은 음극과 양극을 물리 적으로 분리할 뿐만 아니라 생성되는 수소와 산소의 섞임 현상을 방지하며 이온의 전달을 가능하게 하는 복합적인 역할을 수 행한다. 특히 기존의 수전해 기술들의 단점을 보완할 수 있는 차세대 음이온 교환막 수전해에서의 핵심은 우수한 음이온 교 환막을 확보하는 것이다. 높은 이온 전도성과 알칼리 환경에서 우수한 내구성을 동시에 가지려는 많은 연구들이 진행되고 있 으며 다양한 소재에 대한 탐색이 이루어지고 있다. 본 총설에서는 상용 블록 공중합체인 Polystyrene-b-poly(ethylene- co-butylene)-b-polystyrene (SEBS)를 기반으로 하는 음이온 교환막에 대한 연구에 대해 살펴보며 최신 연구 동향과 앞으 로 나아가야할 점에 대해 논하고자 한다.