본 실험은 물냉이 수경재배 시 양액 내 발생 시킨 마이크로버블이 물냉이의 생육과 glucosinolate 축적에 미치는 영향을 알아보기 위해 수행되었다. 본엽 4매의 물냉이 유묘(파종 2주 후)를 마이크로 버블과 비-마이크로버블을 발생시킨 오오츠카 배양액을 이용하여 환경조절룸에서 3주간 재배하였다. 물냉이 초장은 대조구처리가 마이크로버 블처리보다 41% 증가하였으며, 유의적으로 높게 나타났다. 그러나, 지상부 생체중과 건물중, 근장, 엽장, 엽폭, SPAD, 량자수율값은 두처리간 유의적 차이는 나타나지 않았다. Glucosinolate 함량을 분석 결과 4-methoxygluco-brassicin을 제외한 glucoiberin, glucobrassicin, gluconapin, gluconasturtiin의 경우 마이크로버블 처리구가 대조구보다 유의적으로 높게 나타났으며, 물냉이 한주 당 총 glucosinolate 함량은 마이크로버블 처리구가 대조구 보다 85%(μmol/g DW)와 65%(μmol/plant) 더 높게 나타났다. 본 연구 결과는 담액재배시 양액 내 마이크로버블 이 물냉이의 glucosinolate 함량을 증가시킬 수 있을 것으로 나타났다.
배양액의 종류 및 LED를 이용한 다양한 광질 조건이 물냉이의 생장과 glucosinolates 함량에 미치는 영향을 3주간의 수경재배를 통하여 살펴보았다. 물냉이 종자를 암면배지에 파종 후 발아시켜, 2주간 육묘하였다. 유묘들은 semi-DFT 시스템에 이식하였다. 환경조절실은 주간온도 20±1℃와 야간온도 16±1℃, 주간습도 65±10%와 야간습도 75±10%의 범위에서 조절되었으며 16/8h 조건의 광주기와 180±10μmol·m-2·s-1 광강도를 유지하였다. 배양액은 오오츠카 하우스 1A(OTS), 한국원시(HES)과 화란온실작물연구소(PBG) 배양액을 초기 EC 1.0-1.3, pH 6.2와 형광등을 광원으로 실험하였다(실험-1). 광질에 대한 생육과 glucosinolates 함량을 분석하기 위하여 단색광(적색: R10, 백색: W10) 처리구와 혼합광(적청녹색: R2B1G1, 백청녹색: W2B1G1, 적색: R10, 적청색: R5B1, 적청색: R3B1)처리구를 두었다. 물냉이 지상부의 생육은 3개의 배양액 처리구에서 유의적인 차이가 발견되지 않았지만, 뿌리의 생체중은 HES와 비교하여 PBG와 OTS에서 13.7%와 55.1% 증가하였다. OTS 처리는 PBG와 HES 처리구에 비해 gluconasturtiin 함량이 96%, 65% 증가하였다. 백색광조건(W10)과 비교하여 적색광(R10) 처리는 초장이 101.3% 증가하였다. 청색광 비율의 증가는 지상부 생육에 긍정적인 영향을 주었다. 물냉이의 건물중 당 glucosinolates 함량은 R2B1G1 처리구와 비교하여 R3B1 처리구에서 144.5% 증가하였으며, W10 처리구와 비교 시, 약 70% 증가하는 경향을 보였다. R3B1 처리구에서 물냉이의 생육과 총 glucosinolates의 함량이 가장 높게 나타났다.
Antibacterial activities in each part of watercress(Oenanthe javanica D.C.) grown under different culture conditions were measured to determine the possibility to use watercress as a resource to develop the antibacterial substance. The leaves of watercress were extracted with methanol and the methanol extract was further fractionated with various organic solvents. Antibacterial activities against Shigella dysenteriae ATCC 9361 in all fractions were determined according to the agar diffusion method using paper disc. Methanol extract of watercress leaves was more effectively inhibited the growth of the tested bacteria than the extracts of roots or stems at the concentration of 0.5 g eq./disc, and the extract of watercress from Hwasoon was the most effective one as compared to others. Phenolic and neutral fractions fractionated from methanol extract of watercress had a considerable inhibiting activity on the growth of the bacteria, but acidic and basic fractions did not show any inhibitory effect. Minimum inhibitory concentrations of phenolic and neutral fractions against Shigella dysenteriae ATCC 9361 were 400 μg/disc and 550 μg/disc, respectively.
Chemical properties of the different parts of watercress(Oenanthe javanica D.C.) grown and harvested from the culture fields under different cultivating methods were studied. In proximate analyses of watercress in parts, moisture contained more in stem than in root or in leaf, but crude protein and crude lipid contents were lower in stem than in root or in leaf. Crude ash in root contained up to about double amount in leaf or stem. Major mineral elements detected in watercress were Fe, Mg, Ca, and K, and their contents in root was higher than those in stem or leaf. Especially, Fe in root was significantly higher than that in stem or in leaf. Total free sugar composed mainly with fructose and glucose, was the highest in watercress from Hwasoon and followed the watercress from Jeonju and Donggok in order. Free sugar content was highest in leaf and the lowest in root. Major water-soluble vitamins were vitamin C, thiamin and biotin and the content of vitamin C was higher than others. These vitamins contained more in leaf than in stem or root. Niacin contained 6.09 mg/100 g in leaf of watercress from Hwasoon, which was much higher than others, but it was not detected in stem of watercress from Jeonju. Organic acids detected were oxalic acid, citric acid and malic acid and other 12 organic acids were not detected. In fatty acid composition, there were significant differences among watercresses from different parts and different culture fields. Linoleic acid, linolenic acid and palmitic acid were major fatty acids contained in watercress and it took about 80% of the total content. Amino acid content in leaf was higher than that in root and in stem. Glutamic acid and proline were major amino acids in stem of watercress from Jeonju and in stem of watercresses from Hwasoon and Donggok, respectively. In leaves of all three watercresses glutamic acid content was the highest.
Background : Nasturtium officinale, belongs to the Brassicaceae, is a perennial plant growing in and around natural watersystem. It is commonly called watercress and commercially consumed as a salad crop in many countries. Hairy root cultures (HRCs), transformed by Agrobacterium rhizogenes (A. rhizogenes), have been noted for an experimental model system in plant metabolic engineering for the synthesis of natural products since hairy roots have fascinating properties including biochemical and genetic stability, high biosynthetic capacity for secondary metabolites and rapid growth rates. Methods and Results : The dry weights (DW) of watercress hairy roots was measured after 4-days freeze dryer. The highest weight was recorded after HRCs in SH and half-strength SH medium, followed by the levels of DW in MS and half-strength medium. However, the level of DW after HRCs in half-strength medium was lowest. SH medium is the most suitable for the growth of watercress hairy roots. Glucosinolate contents in the hairy roots varied responding to the basal media. 1/2 SH basal media resulted in the lowest value of total glucosinolate. MS basal media, however, resulted in the highest value of total glucosinolate, as well as the highest accumulation of each glucosinolate. The hairy roots cultured in 1/2 MS basal media showed the second highest value of total glucosinolate, followed by B5, SH and 1/2 B5. The accumulation of 4-Methoxyglucobrassicin and gluconasturtiin was also secondly higher in the hairy roots in 1/2 MS. In contrast, the level of 4-Hydroxyglucobrassicin and glucobrassicin were the second highest after culturing in SH and B5, respectively. Conclusion : In this study, media played a main role in growth and glucosinolate accumulation in watercress hairy roots. SH and half-strength SH media enabled the rate growth of hairy roots to be highest. In contrast, the highest accumulation of glucosinolate was recorded after HRCs in MS media. The current study suggests HRCs of watercress could be one of an effective alternative approaches for the enhanced production of glucosinolates
Background : Nasturtium officinale L. which is commonly known as watercress is aquatic perennial herb distributed to Europe, Asia, North and South America. It consist of various nutrients and beneficial compounds such as vitamin B and C, provitamin A, folic acid, carotenoids, glucosinolates, and minerals. Recent studies have demonstrated the biological properties that include antidiabets, antiinflammatory, antioxidative, and anticancer. In this study, the effects of light-emitting diodes (LEDs) on growth and development, accumulation of phenolic compounds and glucosinolates were investigated in watercress. Methods and Results : Length of shoot and root, and fresh weight of whole plants were measured every weeks (1 to 3 weeks) after sowing. These were significantly affected by different LED lights. Normally, length of shoot and fresh weight of white- and blue-light-radiated watercress were less than those of red-light-radiated watercress. Contents of phenolic compounds and glucosinolates were investigated in watercress under different LEDs treatment by HPLC analysis. Six phenolic compounds including catechin hydrate, chlorogenic acid, caffeic acid, p-coumaric acid, trans-cinnamic acid, and kaempferol were detected. Also, eight glucosinolates that include four aliphatic glucosinolates (glucoiberin, gluconapoleiferin, glucosiberin, and glucohirsutin), three indolic glucosinolates (4-hydroxyglucobrassicin, glucobrassicin, and 4-methoxyglucobrassicin), and one aromatic glusinolate (gluconasturtiin). Mostly, white light treatment led to the higher production of their compounds than those of red- and blue-radiated. Conclusion : It is concluded that different LED lights have effect on growth rates and secondary metabolites production. Red light caused vigorous growth of shoot and affected their fresh weights. In addition, the accumulation of each compounds was varied depending on light colours and time of harvest.