Recently, wideband acoustic technology has been introduced and started to be used in fisheries acoustic surveys in various waters worldwide. Wideband acoustic data provides high vertical resolution, high signal-to-noise ratio and continuous frequency characteristics over a wide frequency range for species identification. In this study, the main characteristics of wideband acoustic systems were elaborated, and a general methodology for wideband acoustic data analysis was presented using data collected in frequency modulation mode for the first time in Republic of Korea. In particular, this study described the data recording method using the mission planner of the wideband autonomous acoustic system, wideband acoustic data signal processing, calibration and the wideband frequency response graph. Since wideband acoustic systems are currently installed on many training and research vessels, it is expected that the results of this study can be used as basic knowledge for fisheries acoustic research using the state-of-the-art system.
We present the development of a spectral dispersion device for wideband spectroscopy for which the primary scientic objective is the characterization of transiting exoplanets. The principle of the disperser is simple: a grating is fabricated on the surface of a prism. The direction of the spectral dispersion power of the prism is crossed with the grating. Thus, the prism separates the spectrum into individual orders while the grating produces a spectrum for each order. In this work, ZnS was selected as the material for the cross disperser, which was designed to cover the wavelength region, ⋋ = 0.6-13 μm, with a spectral resolving power, R ≥ 50. A disperser was fabricated, and an evaluation of its surface was conducted. Two spectrometer designs, one adopting ZnS (⋋ = 0.6-13 μm, R ≥ 300) and the other adopting CdZnTe (⋋ = 1-23 μm, R ≥ 250), are presented. The spectrometers, each of which has no moving mechanical parts, consist simply of a disperser, a focusing mirror, and a detector.
This paper addresses a design issue of “model complexity and performance trade-off” in the application of bandwidth extension (BWE) methods to the intra-frame predictive vector quantization problem of wideband speech. It discusses model-based linear and non-linear prediction methods and presents a comparative study of them in terms of prediction gain. Through experimentation, the general trend of saturation in performance (with the increase in model complexity) is observed. However, specifically, it is also observed that there is no significant difference between HMM and GMM-based BWE functions.
본 논문에서는 UWB(ultra wideband) 무선통신 응용을 위해 3GHz의 광대역 무지향성 마이크로스트립 패치 배열 안테나를 구현하였다. 7.2~10.2GHz의 광대역의 밴드를 만족시키기 위해 다중공진 안테나가 설계되었고, 각 공진주파수는 600MHz의 간격을 가지고 7.5, 8.1, 8.7, 9.3, 그리고 9.9GHz의 5개 중심주파수로 분리하였고 광대역 특성을 위해, 각 중심주파수에서 U-slot 안테나가 각각 설계되었다. 설계된 5개의 U-slot 안테나는 3GHz의 대역폭의 다중공진을 위해 병렬로 연결되었고, 임피던스 정합 과정은 7.5GHz 패치안테나와 8.1GHz 패치안테나의 중심주파수인 7.8GHz를 적용하여 전송 선로를 구한 후 같은 방법으로 전송 선로 임피던스 정합을 하여 광대역 매칭 회로가 되도록 설계하였다. 안테나 제작에 이용된 PCB 기판의 비유전율, 기판높이, 손실은 각각 εr= 4.8, h=0.6 그리고 손살탄젠트는 0.0009였다. 제작된 안테나의 방사패턴과 이득은 5개의 중심주파수에서 1.46~4.08dBi의 이득을 나타내었다.