This paper presents the torque ripple reduction control to apply an SRM to the X-by-wire drive systems which replaces the mechanical control method with “by-wire” to secure the flexibility of design and modification. However, torque ripples generated from the SRM can affect the performance and stability of the system. The proposed torque ripple control schemes are compared with the previously studied methods by dynamic simulation in regards to torque distribution functions and instant torque controller.
This paper proposes predictive deadbeat current control, one of the model predictive controls. The predictive deadbeat control is compared to the conventional current control methods to validate its feasibility in X-by-Wire systems.
The study discusses remote control torch system that is equipped with CO2 double wire reel. The welding machine is 30m away from the wire feeder at the industrial site and the feeder is three to five meters away from the torch. Accordingly, the welders cannot control the current and voltage that meets the welding condition during work when they are working at a place that prevents them from seeing the control panel such as inside a vehicle or tank or at a far work site. They also have no choice but to stop working to change the wire reel when it is completely burned out. Such work suspension resulting from frequent moves to adjust current and voltage as well as replace the wire and subsequent cooling causes welding defects. The study produced a remote control torch equipped with double wire reel by simplifying and streamlining the existing CO2 functions to reduce the troubling issue. The remote control torch equipped with double wire reel and the existing CO2 /MAG welding torch were applied as V-groove butt in the vertical position using 9mm rolled steel for SM50A welding structure. After completion of welding, the condition of welded surface beads went through visual inspection as well as radiographic inspection to analyze the welding quality inside the welded part. The study also evaluated reduction of welding defects, cost saving, the replacing performance against the existing commercial welders and the effect on possible compatibility
This paper deals with a strategy of gain optimization for the kinematic control algorithm of a wire-driven surgical robot. The proposed controller consists of the closed-loop inverse kinematics with the back-calculation method. The closed-loop inverse kinematics has 18 PID control gains, and the back-calculation method has 6 gains. An efficient strategy is designed to optimize 18 values first and then the remaining 6 values. The optimal gain sets are searched under the step input with performance indices. In this gain optimization, the objective function is defined as the minimum value of signal-to-noise ratio of the performance indices for 6 DoF (Degree-of-Freedom) motion that is based on the Taguchi method, and the constraints are applied to obtain stable responses for each motion evenly. The gain sets obtained are verified by simulations using the test trajectories. In comparative results, the optimal gain value based on the performance index combined with ISE (integral of square error) and settling time showed the best control performance.
This work presents a design and control method for a flexible robot arm operated by a wire drive that follows human gestures. When moving the robot arm to a desired position, the necessary wire moving length is calculated and the motors are rotated accordingly to the length. A robotic arm is composed of a total of two module-formed mechanism similar to real human motion. Two wires are used as a closed loop in one module, and universal joints are attached to each disk to create up, down, left, and right movements. In order to control the motor, the anti-windup PID was applied to limit the sudden change usually caused by accumulated error in the integral control term. In addition, master/ slave communication protocol and operation program for linking 6 motors to MYO sensor and IMU sensor output were developed at the same time. This makes it possible to receive the image information of the camera attached to the robot arm and simultaneously send the control command to the robot at high speed.