선박 및 플랜트의 배관은 제작부터 설치까지 일련의 과정을 모두 현장에서 하는 것이 아닌, 외부의 공장 또는 숍으로부터 배관의 제일 작은 요소인 스풀 배관을 제작하고, 이를 작업현장 또는 현장 근처의 공장에서 모듈화 또는 가설치 작업 및 현장에서 직접 설치작업을 통해 제작이 된다. 이 과정에서 스풀은 3D CAD를 기반으로 하는 것이 아닌 2D 도면을 기반으로 하기 때문에, 작업공간을 고려하지 못할 수 있다. 이러한 이유로 실제 설치작업 시 작업공간의 방해로 인한 공기의 지연을 발생 시킬 수 있다. 본 논문은 이러한 스풀 배관의 설치 시 또는 운용 및 유지보수 시에 생길 수 있는 외부 구조물과의 스풀 위치에 관하여, 스풀 위치가 외부 구조물로부터 방해를 받지 않도록 하기 위한 방법으로 유전 알고리즘을 적용하여 스풀 위치를 결정하는 방법에 대해 제시하고자 한다.
사용후핵연료와 같은 고준위 방사성물질을 취급하는 핫셀 내에서 원격취급장치인 MSM의 작업영역을 벗어난 지역에 위치한 공정장치부품 유지보수공정을 개발하였다. 이를 위하여 대상 핫셀공정인 사용후핵연료 차세대관리공정에 대한 가상목업을 구축하였으며, 구축된 가상목업을 이용하여 MSM 작업영역 및 작업자 시각영역을 분석하고, 그래픽 가상목업의 충돌감지 기능을 이용한 서보 조종기의 경로계획을 수립하였다. 또한, 분석한 결과를 토대로, 서보조종기에 의한 사각지역 내 부품 유지보수 공정을 설정하였으며, 설정된 공정은 그래픽 전산모사를 통하여 검증하였다. 제안된 유지보수 공정은 실제 핫셀공정 수행시 유용하게 활용될 것이며, 그래픽 가상목업은 다양한 핫셀 공정에 대한 분석 및 작업자 훈련 시스템으로 활용하여, 작업 효율성 및 안전성 향상에 기여할 것으로 기대된다.
It is well-known that when singularities are located within the workspace of the parallel mechanism (PM), the usefulness of its workspace is significantly deteriorated. To handle this problem, we suggest an optimal design method which leads to more useful and larger workspace of the PM by taking its singularity locations into consideration in design process. Kinematic models of three selected planar PMs, a 5R type PM, a 3-RPR type planar PM, and a 3-RRR type planar PM, are derived via screw theory and their singularity analyses are conducted. Then workspace optimal designs for those three PMs are conducted to verify that the suggested design method leads more useful and larger workspace in which deterioration by singularity is minimal.
This paper presents a motion planning strategy for legged robots using locomotion primitives in the complex 3D environments. First, we define configuration, motion primitives and locomotion primitives for legged robots. A hierarchical motion planning method based on a combination of 2.5 dimensional maps such as an obstacle height map, a passage map, and a gradient map of obstacles to distinguish obstacles. A high-level path planner finds a global path from a 2D navigation map. A mid-level planner creates sub-goals that help the legged robot efficiently cope with various obstacles using only a small set of locomotion primitives that are useful for stable navigation of the robot. A local obstacle map that describes the edge or border of the obstacles is used to find the sub-goals along the global path. A low-level planner searches for a feasible sequence of locomotion primitives between sub-goals. We use heuristic algorithm in local motion planner. The proposed planning method is verified by both locomotion and soccer experiments on a small biped robot in a cluttered environment. Experiment results show an improvement in motion stability.